Créer un site internet

Asylh0220 01ronmiller

LE 14.03.2020: Actualité de l'astronomie / Origine de la Lune : le problème de l'oxygène avec le scénario de l'impact résolu ?

Origine de la Lune : le problème de l'oxygène avec le scénario de l'impact résolu ?

 

Journaliste

Comprendre l'origine de la Lune consiste en quelque sorte à résoudre un puzzle combinant des considérations de cosmochimie et de mécanique céleste. Elles ont mené à l'hypothèse d'une collision entre la jeune Terre et une petite planète appelée Théia, il y a environ 4,5 milliards d'années mais des difficultés avec ce scénario subsistent. L'une d'elles, avec les isotopes de l'oxygène, vient peut-être de disparaître.

Les clés de l'univers : la mystérieuse naissance de la Lune  L’origine de la Lune est entourée de mystère. Séparation à partir d’une autre planète, création simultanée avec le Système solaire ou encore collision avec la Terre, plusieurs hypothèses quant à sa formation ont été avancées au cours du temps. Discovery Science s’est penché sur la question au cours de cet épisode des Clés de l'univers. 

L'année dernière, la Nasa avait annoncé à l'occasion des 50 ans du premier alunissage des missions Apollo qu'elle allait sortir de leur hibernation, si l'on peut dire, des échantillons de roches lunaires ramenés par ces missions mais qui avaient été volontairement laissés intacts et isolés à ce moment-là. L'idée était de laisser ces échantillons aux cosmochimistes et planétologues du XXIe siècle, mieux à même de les analyser avec des technologies plus avancées, mais nécessitant que les échantillons soient vierges de toutes tentatives pour ne pas altérer leurs mémoires.

Mais même des échantillons déjà exploités il y a des décennies peuvent révéler des informations sur l'histoire du Système solaire et en l'occurrence sur l'origine de la Lune, si l'on en croit une publication dans Nature Geoscience de trois chercheurs de l'University of New Mexico à Albuquerque (États-Unis). En utilisant des spectromètres de masses du Center for Stable Isotopes, ils ont revisité les mesures des abondances en isotopes de l'oxygène (16O,17O,18O) de nombreux échantillons de roches lunaires conservés au Centre spatial Lyndon B. Johnson, en les comparant ensuite aux mêmes abondances déterminées avec les mêmes instruments dans des roches terrestres (on peut trouver les échantillons lunaires utilisés sur une archive de la Nasa).

Une présentation des archives des roches lunaires. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © PBS NewsHour

Dans le premier cas, il s'agissait de basaltesanorthositesnorites et verres volcaniques (le fameux sol orange d'Apollo 17), alors que dans le second on trouvait également des basaltes mais aussi des gabbros et des péridotites. Dans tous ces cas, l'ensemble des échantillons devait permettre de se faire une idée de la composition moyenne silicatée des deux astres et donc d'accéder à celles en isotopes de l'oxygène qui se trouvent dans les manteaux lunaires et terrestres.

Des signatures isotopiques différentes en accord avec un impact géant

Les résultats obtenus ont surpris les chercheurs, ils ont découvert des variations entre les abondances des échantillons lunaires et celles des échantillons terrestres qui avaient jusqu'ici échappé à leurs prédécesseurs. Pour la première fois, on découvrait qu'il y avait bien une différence entre la signature isotopique de l'oxygène du manteau lunaire et celle du manteau de la Terre. Or, cette différence était attendue si le fameux scénario de l'impact géant entre la proto-terre et une petite planète de la taille de Mars et baptisée Théia - en souvenir de la divinité grecque mère d'Hélios (le Soleil) et de Séléné (la Lune) - était bien la bonne explication de l'origine de la Lune, comme Futura l'expliquait dans le précédent article ci-dessous.

Une des roches lunaires utilisées par les chercheurs. Sa référence pour la mission Apollo 11 est 10044. © Nasa

Une des roches lunaires utilisées par les chercheurs. Sa référence pour la mission Apollo 11 est 10044. © Nasa 

Rappelons rapidement que les simulations de capture de la Lune par la Terre ne sont pas très favorables à une capture gravitationnelle en douceur mais implique plutôt une collision. De plus, les premières analyses des roches lunaires montraient des abondances en certains isotopes très proches, voire justement identiques dans le cas de l'oxygène entre ces roches et celles de la Terre, indiquant une origine commune. Or, les modèles de la formation du Système solaire et ce que l'on sait de la composition des météorites, dont certaines sont des roches martiennes, nous indiquent que selon leur lieu d'origine les planètes rocheuses ne peuvent pas avoir des compositions aussi proches.

On pouvait résoudre presque toutes les énigmes en supposant que Théia en entrant en collision avec la Terre avait arraché une partie de son manteau. Les éjectas produits se seraient alors mélangés aux restes de Théia en orbite autour de la Terre qui, par accrétion, auraient donné la Lune.

Le problème, c'est que les abondances des isotopes de l'oxygène, en particulier, étaient bien trop proches, ce qui suggérait soit que Théia s'était formée très proche de la Terre dans le disque protoplanétaire, ce qui était difficile à comprendre et à justifier mais pas impossible, soit il fallait faire intervenir des processus d'homogénéisation et de mélange entre les matériaux de la proto-Terre et de Théia qui n'allaient pas de soi.

Les nouvelles mesures aujourd'hui annoncées semblent donc résoudre pour la première fois les contradictions ou pour le moins les difficultés, de sorte que le scénario de l'impact géant en sort renforcé.

Une autre des roches lunaires utilisées par les chercheurs. Sa référence pour la mission Apollo 15 est 15426. © Nasa

Une autre des roches lunaires utilisées par les chercheurs. Sa référence pour la mission Apollo 15 est 15426. © Nasa 

Source: https://www.futura-sciences.com/sciences/actualites/formation-systeme-solaire-origine-lune-probleme-oxygene-scenario-impact-resolu-57871/?fbclid=IwAR2NvNvcA54x06lPLfy0neRGlpxdkfCSx_HJ2GKxDQT_SPrxF2u5yFPJLAM#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

 

 

 

terre lune FORMATION DU SYSTÈME SOLAIRE astronomie météo

  • Aucune note. Soyez le premier à attribuer une note !

Ajouter un commentaire