Capture 13

LE 25.09.2020 Actualité de l'Astronomie / Magnétar : le VLBA sur la piste de l'énigme des sursauts radio rapides.

Magnétar : le VLBA sur la piste de l'énigme des sursauts radio rapides

 

 

Laurent Sacco

Journaliste

 

 

La méthode de la parallaxe est une méthode géométrique simple permettant d'évaluer la distance des astres. On vient de l'utiliser avec des radiotélescopes pour mesurer pour la première fois directement la distance d'un magnétar. En multipliant ce genre de mesure, on pourrait découvrir que les sursauts radios rapides sont en fait des colères particulières des magnétars.

Cela vous intéressera aussi

 [EN VIDÉO] Interview : qu’est-ce qu’une étoile de Planck ?  La relativité générale bute sur le Big Bang et les trous noirs, qui sont des « singularités ». Et si les trous noirs, à force de se contracter, pouvaient rebondir ? Et si notre univers était né de cette manière ? C'est l'hypothèse des « étoiles de Planck », que nous explique Aurélien Barrau, astrophysicien spécialisé en cosmologie et auteur du livre Des univers multiples. 

Les étoiles à neutrons sont des résidus d'explosion d'étoiles en supernova qui ne peuvent guère contenir que quelques masses solaires mais dont le diamètre est de quelques dizaines de kilomètres seulement. La saga, à leur sujet, a commencé au cours des années 1930 et se poursuit aujourd'hui depuis les années 1990 avec l'étude des magnétars, des étoiles à neutrons avec un champ magnétique prodigieux comme Futura l'expliquait dans le précèdent article ci-dessous. Entre ces deux décennies, les objets théoriques qu'étaient les étoiles à neutrons à leur début sont devenus des sujets d'observations, d'abord avec des radiotélescopes pour la première fois, en 1967, grâce à Jocelyn Bell, puis les rayons X et maintenant, les ondes gravitationnelles à l'occasion de collisions d’étoiles à neutrons donnant des kilonovae.

Au début de leur découverte, les étoiles à neutrons ont très temporairement donné des frissons aux astrophysiciens et astronomes intéressés par le programme Seti car c'est sous forme de pulsars, c'est-à-dire de sources d'émissions périodiques d'ondes radios, qu'ils ont été débusqués par Jocelyn Bell alors en thèse. On pouvait penser qu'il s'agissait de signaux artificiels d'une civilisation extraterrestre mais, comme l'explique Jocelyn Bell dans la vidéo ci-dessous, cette hypothèse a été rapidement réfutée car on ne voyait aucun décalage Doppler.

Dans cette vidéo, extraite du documentaire Du Big Bang au Vivant, Jean-Pierre Luminet parle de la mort des étoiles massives, leur explosion en supernova et la formation de pulsars. © ECP Productions, Jean-Pierre Luminet

 

Les FRB, l'histoire des pulsars qui se répète ?

Depuis quelques années, d'autres mystérieuses sources radios intriguent les astrophysiciens et là aussi, l'hypothèse E.T a été considérée un temps avant d'être abandonnée. Il s'agit des sursauts radios rapides, les Fast radio bursts ou FRB en anglais. Les sursauts radio rapides ont été découverts pour la première fois en 2007. On sait juste qu'ils sont très énergiques et durent au plus quelques millisecondes et que la plupart viennent de l'extérieur de la Voie lactée.

Les FRB pourraient trahir l'existence des étoiles de Planck mais des chercheurs ont proposé une hypothèse moins exotique, à savoir qu'ils soient la manifestation de magnétars, des étoiles à neutrons possédant des champs magnétiques d'une intensité record dans le cosmos observable, de l'ordre de mille milliards de fois l'intensité du champ magnétique de la Terre.

Pour tenter d'y voir plus clair à ce sujet, et comme ils l'expliquent dans une publication en accès libre sur arXiv, une équipe de radioastronomes a, pour la première fois, réussi à faire une détermination précise de la distance d'un magnétar au Système solaire en faisant une mesure de parallaxe avec les radiotélescopes du Very Long Baseline Array (VLBA). Rappelons qu'il s'agit d'une technique de combinaison par interférométrie des mesures de plusieurs radiotélescopes répartis sur les continents permettant de faire de la synthèse d'ouverture qui, à la fin, compose un instrument virtuel dont la taille peut être équivalente à celle de la Terre. On peut donc faire des observations avec une résolution spectaculaire.

Jocelyn Bell nous raconte sa découverte des pulsars. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Perimeter Institute for Theoretical Physics

L'interférométrie à très longue base (ou VLBI pour Very Long Baseline Interferometry) est l'une des techniques fondamentales de la radioastronomie moderne, qui a d'ailleurs permis le succès de la collaboration Event Horizon Telescope, réussissant à imager pour la première fois un trou noir supermassif au cœur d'un noyau actif de galaxie, M87*. Elle a été proposée en 1962 par Leonid Matveenko, Nikolai Kardashev, et Gennady Sholomitskii, avec le soutien du radioastronome ukrainien et soviétique Iossif Chklovski du célèbre Institut Shternberg.

Dans ce cas précis, le VLBA comprend 10 antennes, de 25 mètres chacune, couvrant le territoire américain depuis Sainte-Croix, dans les Îles Vierges situées dans les Antilles, et le Mauna Kea sur l'île d'Hawaï, dans l'océan Pacifique.

 

Les mesures de distances, une clé pour l'astrophysique

Les étoiles à neutrons ne sont pas toutes des pulsars et c'est aussi vrai dans le cas des magnétars dont on ne connaît à ce jour que six exemples capables d'émettre des impulsions radios. Le premier du genre a été découvert en 2003 et, dans un catalogue, il est mentionné sous la forme XTE J1810-197. Son activité s'est poursuivie de 2003 à 2008, puis de janvier à novembre 2019 et, tout dernièrement, de mars à avril 2020.

Un schéma expliquant la méthode de la parallaxe appliquée à un magnétar (voir les explications ci-dessous ). © Sophia Dagnello, NRAO/AUI/NSF

Un schéma expliquant la méthode de la parallaxe appliquée à un magnétar (voir les explications ci-dessous ). © Sophia Dagnello, NRAO/AUI/NSF 

C'est justement XTE J1810-197 qui a été observé à des dates différentes sur la voûte céleste en utilisant la méthode de la parallaxe connue depuis l'antiquité en astronomie planétaire et rendue possible pour la première fois avec des étoiles au début du XIXe siècle grâce aux observations publiées en 1837 par les astronomes allemands, Friedrich Georg Wilhelm von Struve pour Vega, et en 1838, par  Friedrich Wilhelm Bessel pour 61 Cygni.

Cette méthode est simple à comprendre et repose sur des raisonnements élémentaires en géométrie pour un Homo sapiens du XXIe siècle ; évidemment, il en était tout autrement au temps des grecs comme Hipparque. Il faut mesurer à 6 mois d'intervalle des positions d'un astre sur la voûte céleste et appliquer la trigonométrie dans les triangles. De la mesure de la variation angulaire apparente de l'astre et de la connaissance du diamètre de l'orbite terrestre, on en déduit sa distance. Dans le cas de XTE J1810-197, elle est d'environ 8.100 années-lumière, ce qui confirme qu'il s'agit bien d'un des plus proches magnétars connus.

Cette donnée est d'importance car elle permet de mieux calculer la puissance des éruptions de rayonnement produites par ce magnétar et donc de contraindre les modèles avancés pour les expliquer. C'est aussi une preuve de principe que l'on peut faire de même avec le VLBA pour d'autres magnétars proches dans la Voie lactée, ce qui veut dire que l'on finira par avoir assez de données collectées pour départager les modèles envisagés, notamment ceux qui font des FRB des éruptions particulières de magnétars.

Ainsi, on sait que le pulsar du Crabe émet parfois des impulsions radio plus fortes qu'à son habitude et que les caractéristiques de ces impulsions laissent penser qu'elles sont analogues à celles, plus puissantes encore, associées aux FRB.

 

CE QU'IL FAUT RETENIR

  • La méthode de la parallaxe est une méthode géométrique simple permettant d'évaluer la distance des astres, d'abord appliquée dans le Système solaire pour les planètes, puis aux étoiles de la Voie lactée proches du Soleil au XIXe siècle.
  • On vient de l'utiliser avec les radiotélescopes combinés du VLBA pour mesurer pour la première fois directement la distance d'un magnétar, XTE J1810-19, une étoile à neutrons fortement magnétisée, et pouvant émettre des impulsions radio à l'occasion de sorte d'éruption.
  • En multipliant ce genre de mesure, on pourrait découvrir que les mystérieux sursauts radios rapides sont en fait des colères particulières des magnétars. Une mesure plus précise de distance permet en effet de mieux évaluer les quantités d'énergies émises par un magnétar et de départager des modèles pour ces émissions.

Source: https://www.futura-sciences.com/sciences/actualites/astronomie-magnetar-vlba-piste-enigme-sursauts-radio-rapides-46740/?utm_content=bufferd707e&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR1mYS99oUhLUG3Neez8gJTYx3LZuujlz3KhnF9jY1xnWyicrFBOxsSTxWY

 

météo astronomie 2020 septembre

  • Aucune note. Soyez le premier à attribuer une note !

Ajouter un commentaire