Articles de dimitri1977
-
LE 7.10.2020 Actualité de l'Astronomie / Comment la Terre a pu perdre 60 % de son atmosphère.
- Par dimitri1977
- Le 07/10/2020
- Dans Actualité de la météo,de l'astronomie et de la sciences à la une du jour
- 0 commentaire
Comment la Terre a pu perdre 60 % de son atmosphère
Nathalie Mayer
Journaliste
Dans l'Univers, les collisions ne sont pas des événements rares. Il arrive parfois même qu'elles soient extrêmement violentes. L'une d'elles, suggère aujourd'hui une étude, a même pu faire perdre à notre Terre jusqu'à 60 % de son atmosphère. Celle qui a mené à la formation de la Lune...
Cela vous intéressera aussi
[EN VIDÉO] Les clés de l'univers : la mystérieuse naissance de la Lune L’origine de la Lune est entourée de mystère. Séparation à partir d’une autre planète, création simultanée avec le Système solaire ou encore collision avec la Terre, plusieurs hypothèses quant à sa formation ont été avancées au cours du temps. Discovery Science s’est penché sur la question au cours de cet épisode des Clés de l'univers.
L'histoire de notre Univers fourmille de collisions en tout genre. Des chocs parfois colossaux entre planètes. Il s'en est même produit au cœur de notre Système solaire. Et plus de 300 simulations jouées sur un supercalculateur. C'est la puissance que des chercheurs de l’université de Durham (Royaume-Uni) ont mobilisée pour étudier les conséquences de collisions majeures sur des planètes rocheuses présentant des atmosphères minces.
C'est à la suite d'un tel impact que les astronomes imaginent aujourd'hui que la Lune a pu se former. Ils pensent qu'il y a environ 4,5 milliards d'années, une protoplanète de la taille de Mars nommée Théia est entrée en collision avec la Terre. Et c'est donc l'exemple qu'ils ont particulièrement étudié.
VOIR AUSSIFaut-il revoir le scénario de la formation de la Lune ?
L'une de leurs simulations montre un impacteur de la taille de Mars frôlant une planète semblable à la nôtre. Reproduisant ainsi la théorie admise par les astronomes pour la formation de la Lune. Révélant une onde de choc d'une puissance impressionnante, et surtout une Terre qui perd entre 10 à 60 % de son atmosphère.
L’animation simulant la collision qui aurait donné naissance à la Lune. Plus de 100 millions de particules sont simulées et colorées en fonction de leur énergie interne, en lien avec leur température. © Ames Research Center, Nasa
Des indices sur la formation de la Lune
Bien sûr, l'ampleur de la perte atmosphérique est fonction du type d'impact géant qu'a subi notre Terre. Alors, les chercheurs ont étudié différents scénarios, prenant pour base différents types de corps collisionneurs. Leurs travaux montrent clairement les impacts et les effets de tels événements sur une planète rocheuse en fonction de divers facteurs tels que l'angle ou la vitesse d'impact ou encore la taille ou la composition des planètes.
L'étude a ainsi montré, par exemple, que des impacts géants et lents entre jeunes planètes et objets massifs peuvent faire gagner une quantité significative d'atmosphère à une planète. À condition que l'impacteur voyage lui aussi avec sa propre atmosphère.
m ne nous renseignent pas directement sur la manière dont la Lune est née. Mais les effets observés sur l'atmosphère terrestre pourraient être utilisés pour affiner les différentes façons dont elle aurait pu se former. Et nous permettre enfin de mieux comprendre l'origine de notre satellite naturel.
-
LE 6.10.2020 Actualité de l'Astronomie / Hubble a épié une supernova au sein d'une autre galaxie pendant plusieurs semaines.
- Par dimitri1977
- Le 06/10/2020
- Dans Actualité de la météo,de l'astronomie et de la sciences à la une du jour
- 0 commentaire
Hubble a épié une supernova au sein d'une autre galaxie pendant plusieurs semaines
Emma Hollen
Journaliste scientifique
Publié le 02/10/2020 à 15h25
En janvier 2018, une explosion a été repérée à la bordure de l'un des bras spiraux de la galaxie NGC 2525. Grâce à sa caméra grand champ (Wide Field Camera 3), le télescope spatial Hubble a pu se tourner à temps vers cette fabuleuse supernova et capturer une série de photographies sur une année entière, récemment assemblées en un timelapse époustouflant. Bien que le télescope ait manqué le pic de luminosité de la supernova, il n'a certainement pas raté le spectacle entier. « Aucun feu d'artifice sur Terre ne peut battre cette supernova, capturée dans sa gloire déclinante par Hubble », commente l'astrophysicien Adam Riess.
La supernova, baptisée SN 2018gv, a pour origine une naine blanche située dans un système binaire, qui avait passé ses dernières années à phagocyter son étoile compagne. Au moment d'atteindre une masse critique, son cœur serait devenu suffisamment chaud pour engager le processus de fusion et la formidable explosion nucléaire résultante. Comme leur luminosité maximale est toujours la même, ces supernovas sont baptisées chandelles standard et servent de mètre étalon. C'est à l'aune de leur lueur que les astronomes peuvent calculer la distance des galaxies qui hébergent ces événements cosmiques, et par extension, le rythme de l'expansion de l'Univers.
La supernova SN 2018gv, capturée par la Wide Field Camera 3 du télescope Hubble © Nasa, Esa, Hubble
La supernova SN 2018gv, capturée par la Wide Field Camera 3 du télescope Hubble. © Nasa, Esa, Hubble
-
LE 5.10.2020 Actualité de l'Astronomie / Trous noirs supermassifs : un quasar éclaire l'énigme de leur croissance rapide.
- Par dimitri1977
- Le 05/10/2020
- Dans Actualité de la météo,de l'astronomie et de la sciences à la une du jour
- 0 commentaire
Trous noirs supermassifs : un quasar éclaire l'énigme de leur croissance rapide
Laurent Sacco
Journaliste
Publié le 01/10/2020
La découverte de trous noirs supermassifs, déjà de grandes tailles, dans les tous premiers milliards d'années de l'histoire de l'Univers observable était une énigme pour les cosmologistes. Mais un changement de paradigme pour la théorie de croissance des galaxies les abritant explique ce phénomène, et des observations en sa faveur se multiplient comme celles du quasar SDSS J103027.09+052455.0.
L'année dernière, Futura avait interrogé le cosmologiste français Romain Teyssier, actuellement professeur d'astrophysique numérique à l'université de Zurich. Très impliqué dans la mission Euclid, le chercheur l'est également avec ses collègues surtout dans le développement du nouveau paradigme proposé pour expliquer la croissance des galaxies et celles des trous noirs supermassifs qu'elles abritent. Selon cette théorie, dite des Stream-Fed Galaxies (SFG), la matière noire canalise dans ses grumeaux et ses filaments des courants de gaz baryoniques froids, donc de matière normale constituée de protons, neutrons et électrons.
Un extrait de la simulation numérique 3D MareNostrum reproduisant 13 milliards d’années de l’évolution de l’Univers depuis l’état homogène de l’après Big Bang jusqu’aux galaxies spirales actuelles. Depuis le Big Bang, la matière noire se serait effondrée gravitationnellement formant des filaments entourant des sortes de bulles presque vides de matière. La gravité dans ces filaments fait naître les premières galaxies à partir de la matière normale attirée par la matière noire, puis rassemble les amas de galaxies en ces filaments observés dans la simulation. Réalisation : Romain Teyssier (CEA), Taille : 50 millions d’années-lumière. © CEA Astrophysique
C'est à l'intersection de ces filaments que naîtraient et surtout croîtraient les galaxies d'après des simulations numériques savantes comme celle utilisant l'un des plus puissants superordinateurs du monde, appelé MareNostrum, en fonction au Centre de calcul de Barcelone. Contrairement à ce que l'on avait cru avant, les collisions suivies de fusion entre galaxies jouaient alors un rôle mineur dans leur croissance et les flambées d'étoiles observées dans les jeunes galaxies pouvaient s'expliquer grâce à l'alimentation en matière baryonique des filaments.
Le paradigme de la théorie SFG prend de plus en plus de poids avec les dernières études observationnelles. Il semble que l'on peut s'en convaincre en lisant une publication dans la revue Astronomy & Astrophysics Letters et dont on peut consulter une version en accès libre sur arXiv. Elle provient du travail d'une équipe d'astronomes ayant utilisé les instruments Muse et Fors2 installés sur le Very Large Telescope (VLT) à l'Observatoire Paranal de l'ESO dans le désert chilien de l'Atacama.
Une vue d'artiste du quasar SDSS J1030+0524 avec six galaxies alimentées par une toile cosmique de filaments de matière. © European Southern Observatory (ESO)
Un trou noir de plus d'un milliard de masses solaires
Dans un communiqué de l'ESO, Marco Mignoli, astronome à l'Institut national d'Astrophysique (INAF) de Bologne en Italie et principal auteur de l'article aujourd'hui publié, explique que « ce travail de recherche a été principalement motivé par le désir de comprendre certains des objets astronomiques les plus complexes - les trous noirs supermassifs de l'Univers jeune, en l'occurrence. Ils composent des systèmes extrêmes dont nous ne connaissons pas à ce jour les véritables raisons de l'existence ».
C'est en observant l'environnement d'une galaxie lointaine contenant un tel astre compact, et visiblement copieusement alimenté en matière puisqu'il est observé alors qu'il est en mode quasar il y a des milliards d'années, que les astronomes ont fait sa découverte. Seulement 900 millions d'années après le Big Bang, le trou noir supermassif à l’origine du quasar SDSS J1030+0524 contenait déjà plus d'un milliard de masses solaires (celui de la Voie lactée n'en compte que 4 millions). On a déjà observé de tels objets et c'était une énigme de savoir comment ils avaient pu absorber assez de matière pour être déjà si gros au début de l'histoire du cosmos observable.
Dans le cas de quasar SDSS J1030+0524, on distingue maintenant qu'il est entouré de plusieurs galaxies prises avec lui dans une sorte de « toile d'araignée cosmique » composée de gaz et s'étendant sur une distance supérieure à 300 fois la taille de la Voie lactée pour reprendre les termes du communiqué de l'ESO.
Une conférence de Romain Teyssier sur la cosmologie numérique appliquée à la naissance et l'évolution des galaxies. Les simulations débutent avec, comme conditions initiales, les contraintes sur les fluctuations de densité de matière environ 400.000 ans après le Big Bang telles que nous l'enseigne la carte du rayonnement fossile dressée avec le satellite Planck. Le chercheur explique surtout que, selon l'acuité de la modélisation de la physique des baryons — notamment avec une résolution de plus en plus grande en ce qui concerne les échelles d'espace et de temps dans les simulations —, avec la formation des étoiles, et pas seulement en tenant compte de la physique de la matière noire, une grande diversité de phénomènes et surtout de formes de galaxies apparaît. © Collège de France
Pour Marco Mignoli, les observations actuelles montrent donc clairement que « les filaments de la toile cosmique sont semblables aux fils tissés par une araignée. Les galaxies occupent les jonctions des filaments, y croissent, tandis que les flux de gaz -- qui alimentent tant les galaxies que le trou noir central supermassif -- s'écoulent le long des filaments ». Ce qui est une manière de dire que le VLT vient d'apporter une preuve de plus en faveur de la théorie SFG.
Ce que confirme d'ailleurs, toujours dans le communiqué de l'ESO, Colin Norman de l'Université John Hopkins, à Baltimore : « Notre découverte accrédite l'hypothèse selon laquelle les trous noirs les plus distants et les plus massifs se sont formés et développés au sein d'épais halos de matière noire, dans de vastes structures. L'absence de détection antérieure de telles structures résulte probablement de limites observationnelles. »
Sa collègue Barbara Balmaverde, astronome à l'INAF de Turin, ajoute quant à elle : « Nous pensons n'avoir aperçu que la partie émergée de l'iceberg, en d'autres termes, les quelques galaxies détectées à proximité de ce trou noir supermassif ne seraient que les plus brillantes ». On devrait en voir plus quand l'Extremely Large Telescope de l'ESO, en cours de construction au Chili, verra sa première lumière.
-
LE 2.10.2020 Actualité de l'Astronomie / Pourquoi les vents de ces étoiles ne sont pas sphériques ?
- Par dimitri1977
- Le 02/10/2020
- Dans Actualité de la météo,de l'astronomie et de la sciences à la une du jour
- 0 commentaire
Pourquoi les vents de ces étoiles ne sont pas sphériques ?
INSU
Grâce à la résolution spectaculaire d'Alma, des chercheurs ont pu cartographier les vents stellaires d'une douzaine d'étoiles mourantes, des géantes rouges, et comprendre leur morphologie complexe.
[EN VIDÉO] Comment une étoile binaire comme Eta Carinae accélère les particules cosmiques Des chercheurs ont observé, en provenance d’Eta Carinae, une émission de rayonnements gamma à de très hautes énergies. Le résultat de l’accélération de particules cosmiques dans la région où les vents stellaires des deux composantes du système binaire se rencontrent.
Les étoiles comme notre Soleil, dans leur stade avancé d'évolution, se dilatent et se refroidissent pour finalement devenir des géantes rouges, puis des nébuleuses planétaires. Elles produisent des vents stellaires, des flots de particules que l'étoile expulse et qui sont parfois des millions de fois plus forts que ceux de notre étoile, ce qui leur fait perdre de la masse. Jusqu'alors, ces vents étaient supposés sphériques, comme les étoiles qu'ils entourent, alors que leurs descendantes, les nébuleuses planétaires, présentent une extraordinaire variété de formes et de couleurs.
Afin de tester cette hypothèse, la collaboration internationale d’astronomes Atomium a réalisé une étude basée sur l'ensemble le plus important et le plus détaillé à ce jour d'observations de vents stellaires autour d'étoiles géantes froides évoluées. Celles-ci ont été effectuées avec l’interféromètre Alma (Atacama Large Millimeter/submillimeter Array), dans l'Atacama au Chili, et l'étude a été soutenue par le Programme national de physique stellaire du CNRS.
Ils devraient être sphériques, comme les étoiles mères dont ils sont arrachés, or les chercheurs ont découverts que les vents stellaires arborent tous des formes différentes, et ne sont jamais sphériques. L'interaction binaire est la clé qui façonne les morphologies des nébuleuses planétaires. © L. Decin, ESO, Alma
Interaction binaire
Résultat : les vents stellaires ne sont pas sphériques mais ont des formes assez similaires à celles des nébuleuses planétaires. Ceci implique que le même processus façonne à la fois les vents des étoiles géantes rouges et les nébuleuses planétaires. Les astronomes ont également démontré que des étoiles de faible masse, ou même des planètes massives à proximité de l'étoile mourante, sont à l'origine des différentes formes observées. Un processus nommé « interaction binaire ».
Cette étude permet d'imaginer à quoi pourrait ressembler le Soleil lorsqu'il mourra dans sept milliards d'années. Jupiter ou Saturne -- de par leur grande masse -- vont déterminer la forme au cœur de laquelle le Soleil passera ses derniers millénaires. Spirale ? Papillon ? Laquelle des formes envoûtantes des nébuleuses planétaires sera créée ?
VOIR AUSSIComment une étoile binaire comme Eta Carinae accélère les particules cosmiques
-
LE 2.10.2020 Actualité de l'Astronomie / Pourquoi les vents de ces étoiles ne sont pas sphériques ?
- Par dimitri1977
- Le 02/10/2020
- Dans Actualité de la météo,de l'astronomie et de la sciences à la une du jour
- 0 commentaire
Pourquoi les vents de ces étoiles ne sont pas sphériques ?
INSU
Grâce à la résolution spectaculaire d'Alma, des chercheurs ont pu cartographier les vents stellaires d'une douzaine d'étoiles mourantes, des géantes rouges, et comprendre leur morphologie complexe.
[EN VIDÉO] Comment une étoile binaire comme Eta Carinae accélère les particules cosmiques Des chercheurs ont observé, en provenance d’Eta Carinae, une émission de rayonnements gamma à de très hautes énergies. Le résultat de l’accélération de particules cosmiques dans la région où les vents stellaires des deux composantes du système binaire se rencontrent.
Les étoiles comme notre Soleil, dans leur stade avancé d'évolution, se dilatent et se refroidissent pour finalement devenir des géantes rouges, puis des nébuleuses planétaires. Elles produisent des vents stellaires, des flots de particules que l'étoile expulse et qui sont parfois des millions de fois plus forts que ceux de notre étoile, ce qui leur fait perdre de la masse. Jusqu'alors, ces vents étaient supposés sphériques, comme les étoiles qu'ils entourent, alors que leurs descendantes, les nébuleuses planétaires, présentent une extraordinaire variété de formes et de couleurs.
Afin de tester cette hypothèse, la collaboration internationale d’astronomes Atomium a réalisé une étude basée sur l'ensemble le plus important et le plus détaillé à ce jour d'observations de vents stellaires autour d'étoiles géantes froides évoluées. Celles-ci ont été effectuées avec l’interféromètre Alma (Atacama Large Millimeter/submillimeter Array), dans l'Atacama au Chili, et l'étude a été soutenue par le Programme national de physique stellaire du CNRS.
Ils devraient être sphériques, comme les étoiles mères dont ils sont arrachés, or les chercheurs ont découverts que les vents stellaires arborent tous des formes différentes, et ne sont jamais sphériques. L'interaction binaire est la clé qui façonne les morphologies des nébuleuses planétaires. © L. Decin, ESO, Alma
Interaction binaire
Résultat : les vents stellaires ne sont pas sphériques mais ont des formes assez similaires à celles des nébuleuses planétaires. Ceci implique que le même processus façonne à la fois les vents des étoiles géantes rouges et les nébuleuses planétaires. Les astronomes ont également démontré que des étoiles de faible masse, ou même des planètes massives à proximité de l'étoile mourante, sont à l'origine des différentes formes observées. Un processus nommé « interaction binaire ».
Cette étude permet d'imaginer à quoi pourrait ressembler le Soleil lorsqu'il mourra dans sept milliards d'années. Jupiter ou Saturne -- de par leur grande masse -- vont déterminer la forme au cœur de laquelle le Soleil passera ses derniers millénaires. Spirale ? Papillon ? Laquelle des formes envoûtantes des nébuleuses planétaires sera créée ?
VOIR AUSSIComment une étoile binaire comme Eta Carinae accélère les particules cosmiques