Articles de dimitri1977

  • LE 11.05.2020: Actualité de l'astronomie / Découverte du trou noir le plus proche de la Terre connu.

    Découverte du trou noir le plus proche de la Terre connu

     

    Rémy Decourt

    Journaliste

     

    Des astronomes de l'ESO ont découvert un trou noir de petite taille à seulement 1.000 années-lumière de la Terre. Une découverte très inattendue et qui laisse présumer que la Voie lactée compte bien plus de trous noirs qu'on ne le pense. Les explications de Thomas Rivinius, scientifique de l'ESO et auteur principal de l'étude publiée ce jour au sein de la revue Astronomy & Astrophysics.

     

    Une équipe d'astronomes de l'Observatoire européen austral (ESO) et d'autres instituts a découvert l'existence d'un trou noir distant de 1.000 années-lumière seulement de la Terre de façon tout à fait fortuite ! Alors qu'elle observait le système baptisé HR 6819 dans le cadre d'une étude consacrée aux systèmes d’étoiles doubles, l'équipe de Thomas Rivinius s'est rendu compte de l'existence d'un troisième objet, parfaitement inconnu : un trou noir.

    À seulement 1.000 années-lumière de nous, ce trou noir est le plus proche du Système solaire jamais détecté ! Grâce au télescope MPG/ESO de 2,2 mètres installé à l'Observatoire de La Silla de l'ESO au Chili, l'équipe a pu suivre les mouvements de ses deux étoiles compagnons et déduire l'existence de cet objet invisible. Aux dires des astronomes, ce système pourrait bien n'être que la partie émergée de l'iceberg. C'est-à-dire que de nombreux trous noirs similaires pourraient être découverts dans un avenir proche.

    Sur cette vue à grand champ figure la région du ciel, dans la constellation du Télescope, qu’occupe HR 6819, un système triple composé de deux étoiles et du trou noir le plus proche de la Terre détecté à ce jour. Cette vue résulte d’une combinaison d’images issues du Digitized Sky Survey 2. Le trou noir ne peut être aperçu, à la différence des deux étoiles qui composent HR 6819, visibles depuis l’hémisphère Sud par temps clair et par nuit noire, sans jumelles ni télescope. © ESO, Digitized Sky Survey 2, Davide De Martin

    Sur cette vue à grand champ figure la région du ciel, dans la constellation du Télescope, qu’occupe HR 6819, un système triple composé de deux étoiles et du trou noir le plus proche de la Terre détecté à ce jour. Cette vue résulte d’une combinaison d’images issues du Digitized Sky Survey 2. Le trou noir ne peut être aperçu, à la différence des deux étoiles qui composent HR 6819, visibles depuis l’hémisphère Sud par temps clair et par nuit noire, sans jumelles ni télescope. © ESO, Digitized Sky Survey 2, Davide De Martin 

     

    Le premier système triple composé d’un trou noir visible à l’œil nu

    Comme le souligne Petr Hadrava, scientifique émérite de l'Académie des Sciences de la République tchèque à Prague et coauteur de l'étude, « nous avons été très surpris de constater qu'il s'agissait du tout premier système stellaire composé d'un trou noir visible à l'œil nu ». En effet, ce système triple est si proche de nous que les étoiles qui le composent peuvent être observées à l'œil nu par temps clair et par nuit noire depuis l'hémisphère Sud. Par définition, le trou noir étant évidemment invisible !

    Pour déterminer l'existence de ce trou noir, les scientifiques se sont appuyés sur les observations du spectrographe du télescope MPG/ESO qui ont montré que l'une des deux étoiles visibles à l'œil nu orbitait, sur une période de 40 jours, autour d'un imperceptible objet, tandis que la seconde étoile se trouvait à plus grande distance de cette paire intérieure. L'équipe a pu détecter sa présence et déterminer sa masse en étudiant l'orbite de l'étoile composant la paire intérieure. « Un objet invisible doté d'une masse équivalant à 4 masses solaires ne peut être qu'un trou noir », conclut Thomas Rivinius. Il s'agit de l'un des tout premiers trous noirs de masse stellaire découvert à ce jour qui n'interagit pas violemment avec son environnement et qui, par voie de conséquence, nous apparaît véritablement noir.

    Cette découverte renforce l'idée que la Voie lactée abriterait bien plus que les quelques dizaines de trous noirs déjà détectés. Toutefois, les scientifiques estiment que, depuis la naissance de la Voie lactée, un nombre beaucoup plus élevé d'étoiles se sont effondrées en trous noirs à la fin de leur existence. La découverte d'un trou noir silencieux et invisible au sein du système HR 6819 offre des clés de détection spatiale de nombreux trous noirs dissimulés au sein de la Voie lactée. « Des centaines de millions de trous noirs doivent s'y trouver, mais nous n'en connaissons que très peu. Savoir ce qu'il faut chercher devrait nous permettre de mieux les détecter », ajoute Thomas Rivinius.

    Zoom sur le système triple HR 6819. En fin de vidéo, une animation montrant ce système triple composé du trou noir où figurent les orbites et les mouvements des objets composant ce système triple. HR 6819 est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir (trajectoire de couleur rouge). À mesure que nous nous éloignons de cette paire intérieure, nous apercevons l’objet le plus externe du système, une autre étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, YouTube

    La parole à Thomas Rivinius, scientifique de l'ESO et auteur principal de l’étude publiée ce jour au sein de la revue Astronomy & Astrophysics.

     

    Futura : Cette découverte vous a surpris, elle était très inattendue ?

    Thomas Rivinius : En effet.Nous cherchions quelque chose de tout à fait différent, n'attendant qu'un système stellaire binaire normal. Nous espérions que des observations détaillées nous aideraient à comprendre pourquoi les deux étoiles normales à l'intérieur sont si différentes : l'une (l'étoile extérieure Be) tourne si rapidement qu'elle s'envole presque (elle éjecte de la matière d'elle-même, principalement en raison de cette rotation rapide), et l'autre tourne très lentement.

    Puis, nous avons compris qu'il y avait en fait trois objets ! Je tiens à préciser qu'initialement, cette étude avait été menée par un collègue, Stan Štefl (décédé tragiquement dans un accident de voiture en 2014, c'est pourquoi l'étude a calé un peu à l'époque). Nous l'avons maintenant reprise à notre compte aussi parce que nous avons découvert récemment un système que nous pensons être un système triple similaire avec un trou noir nommé LB-1. De plus amples observations sont nécessaires pour confirmer notre intuition.

     

    Un trou noir dans un système triple, c'est plutôt surprenant ?

    Thomas Rivinius : Oui.Une curiosité même ! La plupart des modèles de l'évolution de ces étoiles et de l'explosion de la supernova elle-même prédiraient qu'un tel système serait perturbé et les objets individuels se sépareraient. Le fait que HR 6819 existe toujours en tant que système triple indique que cela ne se produit pas toujours.

     

    Devons-nous nous inquiéter de la découverte d'un trou noir aussi proche de la Terre ?

    Thomas Rivinius : Pour la Terre, pas vraiment. En tant que trou noir de masse stellaire, il ne fait que quelque dix kilomètres de diamètre. Donc, à ce stade, il ne représente même pas un danger pour son voisin immédiat, que nous appelons « l'étoile intérieure B » dans notre étude. Et les deux sont plus proches l'un de l'autre que le Soleil et la Terre. Cependant, à mesure que cette étoile intérieure évolue avec le temps, elle grandira, puis le trou noir commencera à en avaler au moins une partie. Mais c'est encore dans des millions d'années à venir, peut-être même des dizaines de millions d'années !

    Une autre question est de savoir si la supernova d'origine, qui a probablement formé ce trou noir, était dangereuse pour la Terre. Mais ce n'était probablement pas le cas, quand elle a explosé, il y a peut-être 15 à 70 millions d'années. Elle était également à plusieurs centaines de parsecs, pas beaucoup plus près que maintenant (310 pc). C'est considéré comme une distance de sécurité pour une supernova.

    Sur cette vue d’artiste figurent les orbites des objets composant le système triple HR 6819. Ce système est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir récemment découvert (trajectoire de couleur rouge), ainsi que d’une troisième étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, L. Calçada

    Sur cette vue d’artiste figurent les orbites des objets composant le système triple HR 6819. Ce système est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir récemment découvert (trajectoire de couleur rouge), ainsi que d’une troisième étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, L. Calçada 

     

    Qu'apporte la découverte de ce trou noir ?

    Thomas Rivinius : Le point le plus intéressant est que ce n'est probablement pas très spécial ! Il est assez proche, et à moins que nous ne considérions notre environnement local comme une exception, il doit y en avoir beaucoup d'autres. Nous n'en connaissons que quelques dizaines réparties un peu partout dans toute notre Galaxie, principalement parce qu'ils accumulent beaucoup de matière de leur environnement, ce qui les fait briller dans le rayonnement X. Nous estimons, cependant, qu'il doit y avoir des centaines de millions à un milliard de trous noirs supplémentaires dans la Voie lactée, qui ressemblent davantage à celui découvert dans ce système triple : calmes, car ils n'ont rien à accumuler et donc très difficiles à détecter.

     

    Le fait que le système soit si brillant et si proche l'ouvre à des investigations beaucoup plus détaillées que les systèmes plus éloignés ?

    Thomas Rivinius : Être si proche et brillant signifie que nous pourrons peut-être résoudre le système en ses composants individuels. Seule l'interférométrie a cette capacité qui consiste à combiner un certain nombre de télescopes de façon à obtenir une vue aussi nette que si vous aviez un télescope géant de la même taille que les télescopes individuels séparés. Dès que nos observatoires à Paranal recommenceront à fonctionner et que mon équipe pourra utiliser le VLTI (Very Large Télescope Interferometer), nous essaierons cela. Je suis vraiment impatient de le faire.

    Une deuxième possibilité est d'observer HR 6819 dans le X. Bien que ses émissions dans le X montrent que l'activité de ce trou noir est très calme, cela ne signifie pas que rien ne se passe ! Le trou noir accumule probablement quelque chose de l'environnement local, mais comme il est de faible densité, ses capacités à avaler de la matière sont forcément limitées. Toutes les autres observations que nous avons proviennent de trous noirs ayant des taux d'accrétion beaucoup plus élevés. Il reste à démontrer que tout fonctionne de la même manière, même à des taux d'accrétion très faibles, comme avec ce trou noir.

    Source: https://www.futura-sciences.com/sciences/actualites/trou-noir-decouverte-trou-noir-plus-proche-terre-connu-80887/?fbclid=IwAR1fdOwrerfc3VztloXYBt0ZYC7tmcBc_zCSweQegHeH3aS_Ahfb-0CQT40#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • LE 10.05.2020: Actualité de l'astronomie / Et si la vie extraterrestre se trouvait autour d’étoiles mortes ?

    Et si la vie extraterrestre se trouvait autour d’étoiles mortes ?

     

     

    Par Marine Benoit le 05.05.2020 à 20h00ABONNÉS

    Une équipe d’astronomes a déterminé quelles pourraient être les empreintes spectrales de planètes rocheuses dotées d’une atmosphère en orbite autour de naines blanches. Si toutefois elles existaient.

    Chercher la vie autour des naines blanches

    Une vue d'artiste d'une naine blanche vaporisant progressivement une planète en orbite autour d'elle.

    CFA/MARK A. GARLICK/WIKIMEDIA COMMONS

     

    La présence potentielle de vie autour d’une étoile éteinte n’est plus à exclure depuis longtemps, mais encore faudrait-il savoir la détecter. Des astronomes de l’Institut Carl Sagan à l’Université de Cornell ont mis au point un "petit guide" pour repérer d’éventuelles biosignatures sur des planètes en orbite autour de naines blanches, stade final de l’évolution d’une étoile de taille moyenne (de huit à dix fois la masse du Soleil au maximum).

    Arrivées à cette étape ultime de leur vie, les étoiles prennent la taille d'une petite planète comme la Terre mais possèdent encore assez d'énergie pour illuminer plusieurs planètes. De tels systèmes sont alors des candidats privilégiés pour la recherche de la vie selon la méthode du transit. Celle-ci consiste à observer la lumière de l’étoile lorsque l’une de ses planètes passe devant elle. Si ladite planète possède une atmosphère, une partie de la lumière de l’étoile se trouve absorbée par le cocon gazeux. La lumière qui nous parvient de l’étoile est donc modifiée. Moins l’étoile est lumineuse, plus cette modification est marquée. Il est donc beaucoup plus simple d'identifier les composants atmosphériques d'une planète orbitant autour d'une naine blanche que d'une planète semblable à la Terre orbitant autour d'une étoile similaire au Soleil.

     

    "Savoir quoi chercher"

    Dans une étude publiée le 30 avril 2020 dans la revue Astrophysical Journal Letters, l’équipe de Cornell a donc établi quelles pourraient être les empreintes spectrales de ces mondes rocheux gravitant autour d’une naine blanche. "S’ils observaient un transit de ce type de planète, les scientifiques pourraient découvrir de quoi est faite son atmosphère en se référant à cet article, autrement dit en mettant en parallèle son empreinte spectrale (avec nos données). La publication de ce type de guide permet aux observateurs de savoir quoi chercher", explique Thea Kozakis, doctorante en astronomie et première auteure de l’article, dans un communiqué. [...]

    Lire la suite sur: https://www.sciencesetavenir.fr/espace/vie-extraterrestre/et-si-la-vie-extraterrestre-se-trouvait-autour-d-etoiles-mortes_144090
    Source: sciencesetavenir.fr

  • LE 10.05.2020: Actualité de l'astronomie / Certains micro-organismes sont capables de "boire" l'eau des minéraux

    Certains micro-organismes sont capables de "boire" l'eau des minéraux

     

     

    Par Marine Benoit le 09.05.2020 à 20h00

    Comment certaines formes de vies font-elles pour proliférer dans des environnements aussi extrêmes que des déserts aussi secs que la planète Mars ? En s'abreuvant dans directement dans des roches, ont pu prouver des chercheurs financés par l'armée américaine.

    Les bactéries peuvent s'abreuver dans la roche

    Etendu entre le Chili et le Pérou, l'Atacama est le désert non-polaire le plus sec du globe et sans doute le plus proche des conditions existant sur la planète rouge.

    PIXABAY/TRAVELCOFFEEBOOK

     

    Le désert d'Atacama, dans le nord du Chili, est réputé pour être l'un des endroits les plus secs de la planète. Et pour cause, il a été choisi pour accueillir les plus puissants télescopes terrestres qui réclament pour fonctionner une absence d'humidité et des conditions climatiques d'une stabilité extrême. Il est aussi l'un des endroits du monde où l'on recense la plus faible densité d'activité organique, faisant de lui un terrain d'expérimentation idéal dans la recherche de vie extraterrestre. Lors d'une phase de test avant son envoi sur Mars, le rover Zoë de la Nasa y avait toutefois repéré des colonies de bactéries et de lichens. De quoi prouver que la vie peut se nicher partout, même là où on l'y attend le moins. Mais par quel truchement ?

     

    De véritables "pompes à eau"

    Une étude financée par l'armée américaine et menée par les Universités de Californie à Irvine et Riverside et l'Université Johns Hopkins montre que certains organismes ont plus d'un tour dans leur sac. On y apprend que les cyanobactéries, plus précisément, sont capables de survivre en extrayant de l'eau des roches qu'elles colonisent. Lors de travaux sur le terrain comme en laboratoire, l'équipe s'est concentrée sur les interactions de Chroococcidiopsis, une espèce de cyanobactéries parmi les plus primitives au monde, et de gypse, une roche tendre à base de sulfate hydraté de calcium. Chroococcidiopsis a, elle, la dent dure : on la trouve dans les déserts du monde entier. Dans le désert d'Atacama, ses colonies ont été trouvées sous une mince couche de roche, comme une barrière de protection contre les températures écrasantes, le fort rayonnement solaire et les vents violents.

    Une observation a mis la puce à l'oreille des chercheurs : partout où des colonies de Chroococcidiopsis avaient été localisées, le gypse avait muté en anhydrite, une roche plus dense et plus dure. Dans des conditions haute température et de migration d'eau, l'anhydrite prend généralement la place du gypse, comme une évolution naturelle. De quoi laisser penser que les cyanobactéries s'étaient directement abreuvées dans la roche, modifiant ainsi jusqu'à sa nature. "Notre analyse des échantillons de roche colonisés par les bactéries a révélé une phase déshydratée de sulfate de calcium, laissant penser que ces micro-organismes extrayaient l'eau du minéral pour survivre", a déclaré David Kisailus, auteur principal et professeur de sciences et d'ingénierie des matériaux à Irvine. "Il nous fallait ensuite faire des expériences plus contrôlées pour valider cette hypothèse."

     

    Emprunter le chemin le plus court

    Les petits organismes ont ainsi été encouragés à coloniser des cubes de roches d'un demi-millimètre de côté dans deux conditions distinctes : l’une en présence d'eau, pour imiter un environnement très humide, l’autre dans un environnement au contraire très sec. En présence de d’humidité, le gypse n’a pas muté en anhydrite. "Les bactéries n'avaient pas besoin de l’eau contenue dans la roche. Elles pouvaient la trouver dans leur environnement", a expliqué David Kisailus. Mais face à la sécheresse extrêmes, les microbes n’ont eu d'autre choix que d'extraire l'eau du gypse, induisant cette transformation de phase dans le matériau. Plus surprenant encore, les chercheurs ont observé que les cyanobactéries pénétraient la roche dans des directions cristallographiques spécifiques : uniquement le long de certains plans où elles pouvaient accéder plus facilement à l’eau. De vraies petites mineuses.

    "Les scientifiques soupçonnaient depuis longtemps que des micro-organismes pouvaient extraire l'eau des minéraux, mais ceci en est la première démonstration", assure Jocelyne DiRuggiero, professeure agrégée de biologie à l’Université Johns Hopkins et coauteur de l’article, publié le 4 mai 2020 dans la revue PNAS. "Il s'agit d'une stratégie de survie incroyable élaborée par ces micro-organismes vivant à la limite du possible. Elle fournit de précieuses informations dans notre recherche de vie ailleurs."

    Mais pourquoi diantre l’armée américaine s’intéresse-t-elle à ces micro-organismes ? Pour son Laboratoire de recherche en biologie synthétique, de tels résultats s'avèrent précieux. Selon le Dr Matthew Perisin, chercheur en biotechnologie au laboratoire, "les mécanismes de survie microbienne pourraient être mis à profit dans la bioproduction (la production de biomatériaux et de biomolécules stratégiques dans l'équipement, l'armement ou encore l'industrie pharmaceutique) ou encore dans le développement de capteurs sensibles dans des environnements militaires difficiles." 

    Source: sciencesetavenir.fr
    Source: https://www.sciencesetavenir.fr/fondamental/geologie/des-microorganismes-capables-de-boire-l-eau-des-mineraux-prouvent-que-la-vie-peut-decidement-etre-partout_144157

  • LE 10.05.2020: Actualité de l'astronomie / Les ondes gravitationnelles pourraient révéler la présence du quagma dans les étoiles à neutrons.

    Les ondes gravitationnelles pourraient révéler la présence du quagma dans les étoiles à neutrons

     

    Laurent Sacco

    Journaliste

     

    Lors de la fusion de deux étoiles à neutrons les pressions et les températures atteintes pourraient conduire les quarks et les gluons confinés dans les protons et les neutrons à se transformer en un plasma appelé parfois quagma. Cette transition de phase produirait des ondes gravitationnelles caractéristiques prouvant son occurrence.

     

     

    L'Univers observable est un laboratoire de physique des hautes énergies où la nature mène en quelque sorte pour nous des expériences que nous ne pouvons pas mener sur Terre ou difficilement. Cela fait, par exemple, des décennies que les astrophysiciens relativistes échangent des idées avec les physiciens nucléaires pour mieux comprendre tout à la fois la physique des étoiles à neutrons et celle des noyaux sur Terre dans des conditions de températures et de pressions extrêmes qui régnaient aussi au moment du Big Bang.

    Pour ces chercheurs, l'ouverture de l'ère de l'astronomie gravitationnelle, avec la détection directe sur Terre des ondes gravitationnelles par les membres des collaborations Ligo et Virgo, a été une formidable nouvelle. Leur excitation a sans doute été à son comble quand ces mêmes membres ont annoncé la détection de la source GW170817, car il est rapidement devenu clair qu'il s'agissait d'une collision d'étoiles à neutrons produisant une kilonova.

     

    Des kilonovae aux quarks

    En effet, ces astres sont transparents aux ondes gravitationnelles qu'ils émettent, elles portent codées en elles de nombreuses informations sur leur structure et leur composition. Extrêmement compacts, d'un diamètre de quelques dizaines de kilomètres, ils sont si denses qu'une cuillerée à café de leur matière peut peser jusqu'à un milliard de tonnes environ. Pour les décrire on doit donc aussi bien utiliser les équations de la relativité générale et des modèles d'astrophysique relativiste - on peut les trouver dans le fameux ouvrage Gravitation que le prix Nobel de physique Kip Thorne avait coécrit et publié en 1973 avec ses collègues John Wheeler et Charles Misner - que des modèles décrivant ce que l'on appelle l'équation d'état de la matière nucléaire. Les étoiles à neutrons deviennent alors une sorte de banc d'essai où tester la théorie de la relativité générale d’Einstein et obtenir des précisions sur l'équation d'état de la matière nucléaire et la physique qui la détermine.

    La saga de la détection de GW170817. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Science vs Cinema

    En l'occurrence, cette physique repose sur la théorie des quarks proposée indépendamment par George Zweig et Murray Gell-Mann en 1964. Cette théorie a ensuite été complétée au début des années 1970 par Gell-Mann et Harald Fritzsch, alors que les données expérimentales commençaient à fournir des preuves incontestables de la structure en quarks des protons et des neutrons en particulier, et plus généralement de ce que l'on appelle des hadrons. En effet, en 1972, les deux physiciens ont fini par découvrir les équations de la QCD (la chromodynamique quantique) qui gouverne les forces nucléaires entre les quarks en introduisant des cousins du photon, les gluons.

    L'année suivante, en 1973, Gross, Politzer et Wilczek découvrent aussi la liberté asymptotique découlant de ces équations et impliquant que les forces entre quarks ne font qu'augmenter si l'on essaie de les séparer, tant et si bien que l'énergie utilisée pour tenter de le faire provoque la formation de nouveaux quarks qui se lient rapidement en donnant des hadrons.

    Cela va mettre fin aux doutes sur la théorie des quarks car, curieusement dans les expériences, ces nouvelles particules ne pouvaient pas être isolées ni observées séparément comme c'est le cas pour les composants des atomesélectrons et nucléons. Les collisions d'hadrons, supposés être formés de quarks, ne donnaient jamais que des hadrons.

    Une présentation du quagma. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Fermilab

     

    Des quarks et des gluons confinés dans des hadrons

    Toutefois, la QCD nous dit aussi que dans un gaz de protons et de neutrons comprimé et porté à une température 100.000 fois plus élevée que celle régnant à l'intérieur du Soleil, ces nucléons vont tout de même « fondre ». Le résultat sera un liquide ultradense dans lequel les quarks et les gluons se comporteront comme s'ils étaient libres. Mais dès que la température va descendre en dessous d'environ mille milliards de degrés, ce plasma de quarks-gluons, parfois appelé quagma ou encore QGP, se condensera en une myriade d'hadrons généralement instables, au sein desquels quarks et gluons seront à nouveau confinés.

    Les physiciens étudient depuis quelques décennies ce quagma dont ils ont démontré l'existence, notamment dans des expériences menées au Cern avec le LHC. Ils peuvent de cette façon remonter à une période de l'histoire de l'Univers observable où celui-ci était âgé de moins d'un millionième de seconde. Cette phase de la matière n'a pas encore livré tous ses secrets et elle devrait permettre de remonter plus loin dans le passé du Cosmos. On compte justement sur l'étude des étoiles à neutrons pour cela.

    Cette simulation montre la densité de la matière ordinaire (principalement des neutrons) en rouge-jaune. Peu de temps après la fusion des deux étoiles, le centre extrêmement dense devient vert, représentant la formation du plasma quark-gluon. © Lukas R. Weih & Luciano Rezzolla (2019)

    Aujourd'hui, un groupe de physiciens de l'université Goethe de Francfort et du Frankfurt Institute for Advanced Studies vient de publier un article dans Physical Review Letters, que l'on peut consulter sur arXiv, dans lequel ils annoncent avoir obtenu un résultat intéressant concernant justement le quagma et les étoiles à neutrons en utilisant des superordinateurs.

    En effet, les chercheurs ont simulé non seulement la fusion d'étoiles à neutrons et le produit de la fusion pour explorer les conditions dans lesquelles une transition de phase des hadrons pouvait mener à un plasma de quarks-gluons, mais aussi comment ce phénomène pourrait affecter l'émission d'ondes gravitationnelles, accompagnant la fusion des deux astres compacts au point d'y laisser une signature.

    Les résultats obtenus ont été présentés en ces termes par l'un des auteurs de l'article, le professeur Luciano Rezzolla de l'université Goethe : « Par rapport aux simulations précédentes, nous avons découvert une nouvelle signature dans les ondes gravitationnelles qui est nettement plus claire à détecter. Si cette signature se produit dans les ondes gravitationnelles que nous recevrons des futures fusions d'étoiles à neutrons, nous aurons une preuve claire de la création du plasma de quarks-gluons dans l'Univers actuel ».

    Source: https://www.futura-sciences.com/sciences/actualites/ondes-gravitationnelles-ondes-gravitationnelles-pourraient-reveler-presence-quagma-etoiles-neutrons-80870/?fbclid=IwAR24FePLMmdh3fCscUkKOA2QQb9kV8sKVTO4bYZRlZJi2DW7KjE7rcl_usY#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • LE 10.05.2020: Actualité de l'astronomie / Le Soleil est plus calme que les étoiles qui lui ressemblent

    Le Soleil est plus calme que les étoiles qui lui ressemblent

     

    Nathalie Mayer

    Journaliste

    Au fil des années, l'activité de notre Soleil fluctue. Les astronomes le savent depuis le milieu du XIXe siècle. Nous venons d'ailleurs d'atteindre un minimum d'activité. Mais aujourd'hui, des chercheurs nous apprennent que notre étoile est en réalité moins active que ses semblables. Au moins depuis 9.000 ans...

     

     

    À le voir briller ainsi dans le ciel, le Soleil semble ne jamais vouloir changer. Pourtant, les astronomes savent que l'activité de notre étoile varie au cours du temps. Une activité que trahit la présence, en surface, de taches solaires. Et des chercheurs du Max Planck Institute (Allemagne) nous apprennent aujourd'hui que notre Soleil apparaît moins actif que les étoiles qui lui ressemblent. Une conclusion basée sur l'analyse des variations de luminosité de pas moins de 369 étoiles.

    Pourquoi être allé chercher pareille comparaison ? Parce que les relevés de taches solaires fiables ne remontent pas au-delà de 1610. La distribution des isotopes radioactifs du carbone et du béryllium dans les anneaux des arbres et les carottes de glace permet de retracer l'activité de notre Soleil jusqu'à 9.000 ans dans le passé. Mais notre étoile est vieille de près de 4,6 milliards d'années. Notre vision de son activité est donc extrêmement partielle.

     

    La vitesse de rotation comme caractéristique essentielle

    Les chercheurs du Max Planck Institute ont donc décidé d'étudier l'activité d'autres étoiles pour savoir si notre Soleil se comporte « normalement ». Des étoiles semblables à la nôtre, bien sûr. Par leur température de surface, par leur âge et par la proportion d'éléments plus lourds que l'hydrogène et l'hélium qu'elles renferment. Mais aussi par leur vitesse de rotation. Car cette vitesse donne au champ magnétique des étoiles ses caractéristiques. Un champ magnétique lui-même responsable de toutes les fluctuations d'activité desdites étoiles.

    Ici, les variations de luminosité de notre Soleil (en haut) comparées à celles de l’étoile KIC 7849521 (en bas). © MPS / hormesdesign.de

    Ici, les variations de luminosité de notre Soleil (en haut) comparées à celles de l’étoile KIC 7849521 (en bas). © MPS / hormesdesign.de 

     

    De faibles fluctuations de luminosité

    Après avoir écumé les enregistrements des fluctuations de luminosité d'environ 150.000 étoiles fournis par le télescope spatial Kepler (Nasa), ils ont affiné leur échantillon grâce aux données de la mission spatiale européenne Gaia. Résultat : 369 étoiles qui présentent des propriétés fondamentales similaires à celles de notre Soleil ont pu être pointées.

    Et les conclusions des chercheurs sont sans appel. Entre les phases actives et inactives, l'irradiance solaire fluctue en moyenne de seulement 0,07 %. Les fluctuations des autres étoiles sont généralement cinq fois plus marquées.

    Pour élargir leur panel, les chercheurs ont voulu déterminer la période de rotation d'autres étoiles. Mais l'exercice s'est avéré compliqué. Pour cela, il faut, en effet, identifier des schémas qui se répètent périodiquement dans la courbe de lumière des étoiles. Des schémas qui peuvent facilement se perdre dans le bruit de fond. Alors les chercheurs ont aussi choisi d'étudier 2.500 étoiles de type Soleil dont la période de rotation était inconnue. Leur luminosité a fluctué beaucoup moins que celle de l'autre groupe.

    Les chercheurs imaginent qu'il pourrait exister, entre les deux groupes, des différences fondamentales encore inconnues. Ou que les étoiles du premier groupe montrent les fluctuations d'activité dont notre Soleil est en réalité capable. Dans ce cas, il serait tout simplement dans une phase de faible activité depuis au moins 9.000 ans. Et les prévisions d'activité indiquent que cela ne devrait pas changer de sitôt.

    Source: https://www.futura-sciences.com/sciences/actualites/soleil-soleil-plus-calme-etoiles-lui-ressemblent-80825/#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

×