Articles de dimitri1977

  • LE 8.05.2020: Actualité de l'astronomie / Les images du premier contact entre l’astéroïde Ryugu et la sonde Hayabusa2.

    Les images du premier contact entre l’astéroïde Ryugu et la sonde Hayabusa2

     

    Par Joël Ignasse le 07.05.2020 à 20h01

    En février 2019, la sonde Hayabusa2 effectuait sa première descente vers la surface de l’astéroïde Ryugu. En voici les images.

    surface de Ryugu

    La surface de Ryugu photographiée par la sonde Hayabusa2 lors de sa première descente en février 2019.

    JAXA/U. TOKYO/KOCHI U./RIKKYO U./NAGOYA U./CHIBA INST. TECH./MEIJI U./U. AIZU/AIST

     

    La sonde japonaise Hayabusa2 a quitté la Terre en 2014 pour atteindre sa cible, l'astéroïde Ryugu quatre ans plus tard. Cet astre situé entre la Terre et Mars est un gros caillou de 900 mètres de diamètre globalement sphérique et composé majoritairement de carbone et d'eau. La sonde a passé plusieurs années à l'observer et a envoyé à sa surface deux petits atterrisseurs Minerva2 et Mascot.

     

    Deux descentes à risque

    Mais les manœuvres les plus compliquées ont été réalisées en février et août 2019 : Hayabusa2 est descendue à deux reprises vers la surface de Ryugu pour y effectuer un bref contact et prélever des échantillons du sol. Les deux "touchdown" ont été réalisés avec succès et l'engin avec sa précieuse cargaison est en route vers la Terre depuis novembre 2019. Durant sa première descente, la sonde a réalisé des vidéos et des photographies qui sont dévoilées dans la revue Science. Elles donnent l'occasion d'analyser la géologie de la surface et de comprendre une partie de son histoire passée.

    Des observations antérieures faites en orbite par Hayabusa2 ont montré que la surface de Ryugu est composée de deux types de matériaux différents : foncés et rugueux, à la surface friable, ou clairs et lisses. Les premiers apparaissent légèrement rougeâtre tandis que les seconds sont bleutés. La cause de cette variation de couleur est cependant restée inconnue jusqu'à l'atterrissage de Rygu : les photographies prises pourraient permettre de l'élucider.

    Un passage près du Soleil 

    Lorsque les roues de la sonde ont touché la surface de l'astéroïde, les caméras ont montré que ses propulseurs agitaient un revêtement de matériau sombre à grain fin qui semblait correspondre aux matériaux plus rouges de la surface. En reliant ces résultats à la stratigraphie des cratères de l'astéroïde, les chercheurs qui ont analysé les images estiment que la coloration rougeâtre d'une partie de la surface a été causée par une courte période de chauffage solaire intense, ce qui pourrait s'expliquer si l'orbite de Ryugu s'est temporairement tournée vers le Soleil dans son passé. Pour en savoir plus, il faudra attendre l'étude des échantillons qui seront ramenés par Hayabusa2 à la fin de l'année, en espérant qu'elle ait réussi à collecter les deux types de matériaux.

    Source: sciencesetavenir.fr
    Source: https://www.sciencesetavenir.fr/espace/systeme-solaire/les-images-du-premier-contact-entre-l-asteroide-ryugu-et-la-sonde-hayabusa2_144150

  • LE 8.05.2020: Actualité de l'astronomie / Un puissant signal radio en provenance de la Voie lactée a été détecté pour la première fois.

    Un puissant signal radio en provenance de la Voie lactée a été détecté pour la première fois

     

     

    Nathalie Mayer

    Journaliste

     

    Publié le 04/05/2020

    La semaine dernière, les astronomes ont enregistré un signal radio intense en provenance de notre Galaxie. Un signal intense et extrêmement bref. De type sursaut radio rapide. Si cela se confirme, il s'agira là du premier sursaut radio rapide découvert provenant de la Voie lactée. Et d'une source identifiée comme un magnétar, qui plus est.

     

    Il se nomme SGR 1935+2154 et depuis quelques jours, il fait beaucoup parler de lui. SGR 1935+2154, c'est un magnétar, comprenez, une étoile à neutrons possédant un champ magnétique extrêmement intense. Il se trouve à 30.000 années-lumière seulement de la Terre. Dans notre Voie lactée, donc. Et ce 28 avril 2020, plusieurs observatoires ont enregistré de sa part, une émission radio d'une seule milliseconde. Mais une émission tellement intense qu'elle aurait pu être détectée depuis une autre galaxie.

    Markangelodelacruz27@markangelo_dc27

    A fast radio burst is detected from the Magnetar SGR 1935+2154, the first ever detected inside the Milky Way, and the first to be linked to a known source.http://www.astronomerstelegram.org/?read=13681 

    4

    07:13 - 29 avr. 2020

    Informations sur les Publicités Twitter et confidentialité

    Voir les autres Tweets de Markangelodelacruz27

    Le débat est ouvert, mais les astronomes imaginent aujourd'hui qu'il pourrait s'agir là de l'un de ses fameux sursauts radio rapides - ou FRB (Fast Radio Burst) comme les appellent les anglophones. Des centaines de ces FRB ont déjà été identifiés dans notre Univers sans pour autant que les astronomes parviennent à expliquer le phénomène. Des supernovæ aux collisions d'étoiles à neutrons en passant par des civilisations extraterrestres, les hypothèses vont bon train. Et cette observation exceptionnelle pourrait faire avancer les choses.

    C'est d'abord l'expérience canadienne de cartographie de l'intensité de l'hydrogène Chime), un radiotélescope interféromètre, qui a détecté, mardi dernier, un signal si puissant qu'il n'a pas pu être quantifié. Le projet Stare2 - pour Survey for Transient Astronomical Radio Emission 2 -, spécialement conçu pour détecter les FRB locaux, a lui aussi détecté le signal. Avec une densité de flux radiatif de plus d'un million de millisecondes jansky !

    Derek Fox@partialobs

    A Galactic magnetar just generated a bona fide, extragalactic-detectable, Fast Radio Burst (): >1.5 MJy*ms fluence as observed, equivalent to >7 mJy*ms at 149 Mpc https://twitter.com/astronomerstel/status/1255333833697878016 …

    ATel@astronomerstel

    ATel 13684: Independent detection of the radio burst reported in ATel #13681 with STARE2 https://ift.tt/3bKSkeQ 

    35

    05:14 - 29 avr. 2020

    Informations sur les Publicités Twitter et confidentialité

    Voir les autres Tweets de Derek Fox

    Harry Qiu@qiuhao_astro

    A Magnetar this week wasn't exciting enough, here's a Fast Radio Burst! http://www.astronomerstelegram.org/?read=13694 

    6

    01:35 - 2 mai 2020

    Informations sur les Publicités Twitter et confidentialité

    Voir les autres Tweets de Harry Qiu

    Des magnétars à l’origine des sursauts radio rapides ?

    En général, les sursauts radios rapides nous arrivent avec une densité de flux radiatif de quelques dizaines de millisecondes jansky seulement. Cependant, une fois les corrections de distance appliquées, le signal reçu de SGR 1935+2154 correspondrait à un FRB de faible puissance. Mais les experts estiment que si un tel signal radio avait été reçu en provenance d'une autre galaxie, il aurait été classé parmi les FRB, sans hésitation.

    Ce qui déconcerte toutefois les astronomes, c'est qu'ils ont également observé, pour SGR 1935+2154, une émission dans les rayons X. Rien de surprenant, venant d'un magnétar. Mais un tel phénomène n'a jamais encore été observé pour des FRB extragalactiques. Peut-être tout simplement parce qu'il serait indétectable depuis notre Terre.

    Randy Hooks@1HubbleRadio

    ATel #13696: Insight-HXMT X-ray and hard X-ray detection of the double peaks of the Fast Radio Burst from SGR 1935+2154 http://www.astronomerstelegram.org/?read=13696  via @astronomerstel

    17:10 - 2 mai 2020

    Informations sur les Publicités Twitter et confidentialité

    Voir les autres Tweets de Randy Hooks

    SGR 1935+2154 est placé sous étroite surveillance.

    Les astronomes continuent donc de surveiller SGR 1935+2154 de très près. Ils doivent notamment analyser son spectre d'émission au moment de la salve radio. Afin de le comparer à ceux enregistrés pour des FRB connus. S'ils coïncident, ce sera peut-être la preuve qu'une partie au moins des FRB sont dus à des magnétars. Mais cela n'exclura pas la possibilité qu'il existe d'autres sources. Car les FRB répertoriés jusqu'alors présentent des caractéristiques différentes qui pourraient très bien résulter d'origines différentes.

    Source: https://www.futura-sciences.com/sciences/actualites/sursaut-radio-rapide-puissant-signal-radio-provenance-voie-lactee-ete-detecte-premiere-fois-80854/?fbclid=IwAR0S-OdFPKTFyyoQWufjeJVdKzw79izPKAPyhsjmyTlyZQZ7-WHYRhROWE4#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • LE 7.05.2020: Actualité de l'astronomie / Quel est le plus grand objet de l’Univers ?

    Quel est le plus grand objet de l’Univers ?

     

    Nathalie Mayer

    Journaliste

    Dans notre Univers, notre Terre et même notre Système solaire tiennent une place modeste. Si leurs dimensions nous semblent déjà immenses, il existe des objets bien plus grands encore. Découverte...

    .

    Notre Univers est tellement grand qu'il est bien difficile à notre cerveau humain de s'en faire une idée. Il y a d'abord notre Système solaire. Il contient des objets déjà grands, mais que nous arrivons encore à imaginer. Une planète géanteJupiter, dont le diamètre est de l'ordre de 10 fois celui de notre petite planète Terre. Et une étoile, le Soleil, encore bien plus grand. Avec un diamètre de presque 110 fois celui de notre Terre.

    Pourtant, le Soleil entre dans la catégorie des... naines jaunes. Une étoile de dimension modeste, donc, à l'échelle de notre Univers. À l'heure actuelle, l'étoile la plus grande que les astronomes connaissent s'appelle UY Scuti. Une étoile située à 9.500 années-lumière de notre Terre, dans la constellation de l'Écu de Sobieski. Son diamètre atteint le milliard de kilomètres. C'est 1.700 fois celui de notre Soleil ! Et si elle prenait sa place, d'ailleurs, elle s'étendrait jusqu'à l'orbite de Saturne.

    Plus grands que les étoiles, les trous noirs, et plus encore les trous noirs supermassifs, peuvent atteindre des dimensions étonnantes. Ainsi le fameux Holm 15A* -- à environ 700 millions d'années-lumière de notre Terre -- dont la masse a récemment été estimée à 40 milliards de fois celle de notre Soleil. La taille de l'horizon des événements qui lui est associé est tout simplement inimaginable : près de 800 fois la distance Terre-Soleil, ou 10.000 fois celle du trou noir supermassif que l'on trouve au centre de notre Voie lactée.

    La galaxie IC 1101 est la galaxie connue la plus grande de notre Univers. © Hubble Space Telescope, Nasa, ESA

    La galaxie IC 1101 est la galaxie connue la plus grande de notre Univers. © Hubble Space Telescope, Nasa, ESA 

     

    Une galaxie et plus encore

    Mais pour déterminer quel est l'objet le plus grand de l'Univers, encore faut-il savoir quelle définition l'on souhaite donner au terme « objet ». Une galaxie peut certainement entrer dans cette catégorie. Le diamètre du disque galactique de notre Voie lactée à de quoi donner le tournis : plus de 105.000 années-lumière. Mais notre galaxie, son halo galactique, s'étendrait en réalité sur un rayon de quelque 520.000 années-lumière. Soit 5x1018 kilomètres !

    La plus grande galaxie connue à ce jour est une galaxie elliptique connue sous le nom de IC 1101. Elle se trouve à environ 1 milliard d'années-lumière de notre Terre, dans la constellation du Serpent. Son diamètre atteint les 6 millions d'années-lumière.

    Et si l'on ose aller un peu plus loin, on peut attribuer au Grand Mur d'Hercule-Couronne boréale, le titre de plus grand objet de notre Univers. De plus grande structure de notre Univers observable, plus exactement. Puisque le Grand Mur d'Hercule-Couronne boréale est une sorte de filament galactique. Un vaste amas de galaxies liées entre elles par la gravité. Découvert en 2015, son diamètre est estimé à... 10 milliards d'années-lumière !

    Source: https://www.futura-sciences.com/sciences/questions-reponses/univers-plus-grand-objet-univers-13654/?fbclid=IwAR2b3_WQTBiaQeY65zO94ItSAjZzWN2eskEbGG2sZhfUE8_c_OmiLQVlu5s#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • LE 7.05.2020: Actualité de l'astronomie / Trou noir : le quasar OJ 287 fournit une preuve du théorème de la calvitie.

    Trou noir : le quasar OJ 287 fournit une preuve du théorème de la calvitie

     

    Laurent Sacco

    Journaliste

     

     

    Derrière le quasar OJ 287, se trouve un système binaire de deux trous noirs supermassifs qui constitue un laboratoire d'astrophysique relativiste. Avec l'aide du satellite Spitzer, il vient de servir à faire passer un test à la théorie des trous noirs, plus précisément en relation avec le théorème de la calvitie.

     

    Il est généralement convenu d'appeler « Âge d'or » de la physique théorique des trous noirs, la période qui s'étend depuis la découverte en 1963 par Roy Kerr, de sa solution décrivant un trou noir en rotation jusqu'à la découverte par Stephen Hawking de l'évaporation des trous noirs en 1973. Les travaux de plusieurs physiciens et mathématiciens de l'époque allaient permettre de donner un sens précis et rigoureux à ce qu'il fallait entendre par trou noir dans le cadre de la théorie de la relativité générale ainsi que leurs principales propriétés. Une exposition des principaux résultats obtenus peut se trouver dans le fameux ouvrage Gravitation que le prix Nobel de physique Kip Thorne avait co-écrit et publié en 1973 avec ses collègues John Wheeler et Charles Misner.

     

    Les trous noirs n'ont pas de « cheveux »

    L'une des propriétés les plus étonnantes des trous noirs, qui contenait en germe le fameux paradoxe de l’information associé à ces objets, est ce que Wheeler avait baptisé le « No hair theorem », ce que l'on a traduit par le théorème de la calvitie en anglais. Stephen Hawking, et surtout  Werner Israel, ont contribué à la démonstration de ce théorème qui affirme qu'un trou noir et son champ de gravitation sont uniquement déterminés par au plus trois quantités (si l'on exclut les charges magnétiques associées aux monopoles que l'on n'a jamais observées) et même, en pratique, uniquement deux en astrophysique, à savoir une masse totale et un moment cinétique total associé à une rotation du trou noir.

    Ces deux nombres ne sont pas suffisants pour décrire le champ de gravitation d'un objet comme la Terre ou le Soleil car la matière dans ces astres est répartie de façon inhomogène avec des densités variables. Le champ de gravité au-dessus d'une montagne, par exemple, n'est pas le même qu'au dessus d'un désert de sorte qu'un satellite qui se déplace au-dessus de la Terre ne va pas avoir une trajectoire parfaitement régulière. Elle sera accidentée, comme le sont la surface et l'intérieur de notre Planète bleue avec, par exemple, des mouvements de convections de panaches chauds et moins denses dans son manteau. Dit d'une autre manière, la Terre n'est pas un objet parfaitement lisse et son champ de gravitation ne l'est pas non plus, et l'on doit faire intervenir des quantités supplémentaires, des « cheveux » pour reprendre l'analogie initiale pour décrire son champ de gravitation.

    Le prix Nobel de physique indien Subrahmanyan Chandrasekhar a été un pionnier de la théorie des étoiles relativistes dans les années 1960 et de celle des trous noirs dans les années 1970. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © NDTV

     

    Les trous noirs, des objets étonnamment simples et « lisses »

    Il n'y a rien de tel avec un trou noir qui est donc un objet parfaitement lisse, ce qui est très surprenant comme n'a pas manqué de le souligner le prix Nobel de physique Chandrasekhar dans une conférence donnée à l'occasion de la réception de son prix. En effet, à la fin de celle-ci, le grand astrophysicien indien fit les fascinantes remarques suivantes concernant la théorie mathématique des trous noirs :

    « Je ne sais pas si toute la portée de ce que j'ai dit est claire. Laissez-moi vous expliquer. Les trous noirs sont des objets macroscopiques avec des masses variant de quelques masses solaires à des milliards de masses solaires. Lorsqu'ils peuvent être considérés comme stationnaires et isolés, ils sont tous, chacun d'entre eux, décrits exactement par la solution de Kerr. C'est le seul cas connu où nous avons une description exacte d'un objet macroscopique.

    Les objets macroscopiques tout autour de nous sont régis par une variété de forces, décrites par diverses approximations de plusieurs théories physiques. [...] En revanche, les seuls éléments de construction de trous noirs sont nos concepts de base de l'espace et du temps. Ils sont ainsi, presque par définition, les objets macroscopiques les plus parfaits de l'univers. Et, puisque la théorie de la relativité générale nous fournit une famille de solutions dépendant uniquement de deux paramètres pour leur description, ils sont aussi les objets les plus simples de l'univers ».

    Or, il se trouve que, dans les années 1970, Kip Thorne avait proposé un scénario pour tester, en partie au moins, la validité du théorème de la calvitie avec un trou noir. Il fallait pour cela trouver un objet en orbite autour d'un trou noir et étudier ses mouvements pour voir justement à quel point sa trajectoire était régulière ou au contraire perturbée par un champ de gravitation inhomogène, un peu comme si l'objet se déplaçait sur une surface bosselée et non pas lisse.

    Cette animation montre la trajectoire du trou noir autour du trou noir supermassif derrière le quasar OJ 287. Elle traverse plusieurs fois un disque d'accrétion vue par la tranche (edge-on) et chaque traversée donne lieu à une brusque éruption produisant une tout aussi brusque augmentation de la luminosité du quasar et ce, depuis les années 1900, comme le montre le graphique à droite de l'animation. © Nasa, Spitzer

    Il se trouve également que la nature nous a fourni un exemple de cette situation et qu'elle a donc permis de faire passer un test à ce théorème comme l'explique une équipe internationale d'astrophysiciens dans un article publié dans The Astrophysical Journal mais que l'on peut consulter en accès libre sur arXiv.

     

    Un laboratoire pour tester la théorie de la relativité générale

    Pour cela, les chercheurs ont mobilisé les observations du défunt télescope Spitzer en ce qui concerne un quasar bien connu qui avait déjà commencé à servir de test pour la relativité générale comme Futura l'expliquait dans le précédent article ci-dessous. Dénommé OJ 287, ce quasar est un trou noir supermassif situé à environ 3,5 milliards d'années de la Terre. C'est l'un des plus massifs observés puisqu'il contient environ 18 milliards de masses solaires mais son autre particularité est qu'il n'est pas seul car un trou noir également supermassif mais ne contenant que 150 millions de masses solaires (celui de la Voie lactée en contient 4) est en orbite très rapprochée autour de lui.

    En effet, le second trou noir ne met que 12 ans pour boucler cette orbite mais celle-ci est inclinée au-dessus du plan du disque d'accrétion entourant le trou noir principal et elle subit un mouvement de précession comme dans le cas de Mercure autour du Soleil du fait de la théorie de la relativité générale. Le petit trou noir passe donc deux fois à travers le disque d'accrétion pendant une période de 12 ans mais à des dates qui peuvent être espacées d'entre un à dix ans et ce, depuis des décennies que l'on observe comme on peut s'en convaincre en regardant la vidéo ci-dessus.

    À chaque passage dans le disque d'accrétion, il se produit une brusque éruption qui fait quadrupler la brillance du quasar pendant 48 h comme si un milliard d'étoiles s'allumaient brutalement, ce qui est supérieur à la luminosité de la Voie lactée.

    Il y a dix ans, des astrophysiciens relativistes avaient déjà réussi à modéliser la situation au point de pouvoir prédire à quelques semaines près l'occurrence d'une éruption. Depuis, la modélisation s'est affinée, toujours en tenant compte des pertes d'énergie sous forme d'ondes gravitationnelles subies par ce trou noir binaire. Les chercheurs ont donc estimé à quelques heures près l'occurrence du flash de lumière émis le 31 juillet 2019.

    Ce flash n'était pas observable avec les instruments terrestres car, à ce moment là, OJ 287 était de l'autre côté du Soleil par rapport à la Terre, hors de vue de tous les télescopes au sol, et en orbite terrestre. Mais ce n'était pas le cas de Spitzer qui, lui, se trouvait à environ à 254 millions de kilomètres de la Terre, soit plus de 600 fois la distance entre la Terre et la Lune, et alors qu'il n'était pas encore retiré du service (ce fut le cas en janvier 2020).

    Le succès de cette prévision montre que le champ de gravitation autour de OJ 287 est bien celui attendu sur le théorème de la calvitie est bien valable, ce qui accrédite l'idée qu'il y a bien un trou noir de Kerr en rotation décrit par les équations de la théorie de la relativité générale d'Einstein et pas un autre objet exotique encore inconnu, éventuellement décrit par une autre théorie de la gravitation au cœur de la galaxie hébergeant le quasar.

    La galaxie OJ 287 abrite l'un des plus grands trous noirs jamais trouvés, avec plus de 18 milliards de fois la masse de notre Soleil. En orbite autour de ce géant est un autre trou noir massif. Deux fois tous les 12 ans, le plus petit trou noir traverse l'énorme disque de gaz entourant son plus grand compagnon, créant un flash de lumière plus brillant qu'un milliard d'étoiles. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Nasa, Jet Propulsion Laboratory

    CE QU'IL FAUT RETENIR

    • Derrière le quasar OJ 287 se trouve un système binaire de deux trous noirs supermassifs qui constitue un laboratoire d'astrophysique relativiste.
    • Avec l'aide du satellite Spitzer, il vient de servir à faire passer un test à la théorie des trous noirs, plus précisément en relation avec le théorème de la calvitie.
    • En effet, les mouvements du plus petit des trous noirs à travers le disque d'accrétion du plus grand génèrent des flashs de lumière dont l'occurrence a été prédite à quelques heures près en accord avec l'hypothèse que la solution des équations d'Einstein, décrivant le champ de gravitation d'un trou noir en rotation, est rigoureusement décrite par la solution de Kerr.

    POUR EN SAVOIR PLUS

    Une preuve de la théorie d'Einstein au cœur du quasar OJ 287

    Article de Laurent Sacco publié le 18/04/2008

    La relativité générale d'Einstein, et surtout sa prédiction de l'existence d'ondes gravitationnelles, a été brillamment testée avec les pulsars binaires. Elle vient de rencontrer un nouveau succès mais cette fois avec un système binaire de trou noir au cœur d'un quasar.

    La précession de l’orbite de Mercure était une énigme dans le cadre de la physique newtonienne. Il a fallu attendre la théorie de la relativité générale d'Einstein pour reproduire exactement le fait que l'orbite de cette planète autour du Soleil n'était pas une ellipse fermée mais que son périhélie se déplaçait lentement au cours des siècles. Une des prédictions les plus importantes de la théorie d'Einstein est que la nature dynamique de l'espace-temps lui permet d'être le siège d'un phénomène de propagation, similaire aux vagues à la surface de l'océan, et d'émission de la lumière par une charge accélérée. Ainsi, lorsque des masses sont accélérées, elles doivent, moyennant certaines conditions, rayonner de l'énergie sous forme d'ondes gravitationnelles. 

    Or justement, au début des années 1970, Hulse et Taylor firent la découverte d'un pulsar binaire constitué d'une étoile à neutrons en orbite autour d'une étoile compagne. L'observation de ce système au cours du temps montra alors une diminution de la période orbitale, en plein accord avec la perte d'énergie sous forme d'ondes gravitationnelles impliquée par les équations de la relativité générale.

    Aujourd'hui, c'est une nouvelle preuve de la validité de la théorie d'Einstein qui vient d'être apportée par Mauri Valtonen, un astrophysicien de l'observatoire Tuorla en Finlande, grâce aux observations patientes de plus de 25 astronomes, dont certains sont amateurs, dans 10 pays. Remarquablement, elle combine les deux tests précédents mais de façon bien plus impressionnante car elle fait intervenir un système binaire monstrueux formé d'un trou noir de 18 milliards de masses solaires autour duquel en gravite un autre plus petit, pesant néanmoins 100 millions de masses solaires. Ce couple hors normes nous apparaît comme un quasar, connu sous le nom de OJ 287.

    Figure 1. En blanc, les deux pics de luminosité causés par la pénétration du petit trou noir dans le disque d'accrétion du second. Crédit : Tuorla Observatory

    Figure 1. En blanc, les deux pics de luminosité causés par la pénétration du petit trou noir dans le disque d'accrétion du second. Crédit : Tuorla Observatory 

    La relativité générale prévoit les sursauts du quasar au jour près

    OJ 287 est un noyau actif de galaxie connu depuis près d'un siècle, il a donc fait l'objet de nombreuses études et l'on sait que tous les 12 ans environ, sa luminosité augmente selon deux pics rapprochés. En 1988, Valtonen a suggéré que le phénomène était dû au passage du trou noir le plus léger à l'intérieur d'un disque d'accrétion de matière entourant le plus lourd. Cette situation est représentée sur la figure 1 où l'on voit bien l'orbite du plus petit trou noir pénétrant dans le disque rouge orange du second à intervalles répétés.

    Un tel système est remarquable car il fait intervenir des champs gravitationnels élevés et permet donc de tester les équations de la relativité générale dans un régime dit fort. En outre, étant donné les masses des objets impliqués, l'émission d'ondes gravitationnelles doit être particulièrement forte et la précession de l'orbite du trou noir assez élevée. Ces effets sur la périodicité des deux pics de luminosité, bien que difficile à calculer, devraient donc être particulièrement importants.

    Les chercheurs ont donc lancé une campagne d'observations sur plusieurs mois pour observer très précisément les variations de luminosité de OJ 287. L'enjeu était de taille. Avec une connaissance accrue de ce système et le recours aux équations de la relativité générale, combinant les effets de la théorie relativiste des disques d'accrétions autour des trous noirs et celle de l'émission d'ondes gravitationnelles, il devenait possible de prédire à quelques jours près la date des deux pics de lumière. D'après les astrophysiciens relativistes ce devait être autour du 13 septembre 2007.

    Toutefois, l'observation de OJ 287 est compliquée car, depuis la Terre, il n'est visible que pendant 30 minutes avant le lever du Soleil. Il a donc fallu mobiliser des astronomes partout sur la plan&eg

  • LE 7.05.2020: Actualité de l'astronomie / Découverte du trou noir le plus proche de la Terre connu.

    Découverte du trou noir le plus proche de la Terre connu

     

    Rémy Decourt

    Journaliste

     

     

    Des astronomes de l'ESO ont découvert un trou noir de petite taille à seulement 1.000 années-lumière de la Terre. Une découverte très inattendue et qui laisse présumer que la Voie lactée compte bien plus de trous noirs qu'on ne le pense. Les explications de Thomas Rivinius, scientifique de l'ESO et auteur principal de l'étude publiée ce jour au sein de la revue Astronomy & Astrophysics.

     

    Une équipe d'astronomes de l'Observatoire européen austral (ESO) et d'autres instituts a découvert l'existence d'un trou noir distant de 1.000 années-lumière seulement de la Terre de façon tout à fait fortuite ! Alors qu'elle observait le système baptisé HR 6819 dans le cadre d'une étude consacrée aux systèmes d’étoiles doubles, l'équipe de Thomas Rivinius s'est rendu compte de l'existence d'un troisième objet, parfaitement inconnu : un trou noir.

    À seulement 1.000 années-lumière de nous, ce trou noir est le plus proche du Système solaire jamais détecté ! Grâce au télescope MPG/ESO de 2,2 mètres installé à l'Observatoire de La Silla de l'ESO au Chili, l'équipe a pu suivre les mouvements de ses deux étoiles compagnons et déduire l'existence de cet objet invisible. Aux dires des astronomes, ce système pourrait bien n'être que la partie émergée de l'iceberg. C'est-à-dire que de nombreux trous noirs similaires pourraient être découverts dans un avenir proche.

    Sur cette vue à grand champ figure la région du ciel, dans la constellation du Télescope, qu’occupe HR 6819, un système triple composé de deux étoiles et du trou noir le plus proche de la Terre détecté à ce jour. Cette vue résulte d’une combinaison d’images issues du Digitized Sky Survey 2. Le trou noir ne peut être aperçu, à la différence des deux étoiles qui composent HR 6819, visibles depuis l’hémisphère Sud par temps clair et par nuit noire, sans jumelles ni télescope. © ESO, Digitized Sky Survey 2, Davide De Martin

    Sur cette vue à grand champ figure la région du ciel, dans la constellation du Télescope, qu’occupe HR 6819, un système triple composé de deux étoiles et du trou noir le plus proche de la Terre détecté à ce jour. Cette vue résulte d’une combinaison d’images issues du Digitized Sky Survey 2. Le trou noir ne peut être aperçu, à la différence des deux étoiles qui composent HR 6819, visibles depuis l’hémisphère Sud par temps clair et par nuit noire, sans jumelles ni télescope. © ESO, Digitized Sky Survey 2, Davide De Martin 

     

    Le premier système triple composé d’un trou noir visible à l’œil nu

    Comme le souligne Petr Hadrava, scientifique émérite de l'Académie des Sciences de la République tchèque à Prague et coauteur de l'étude, « nous avons été très surpris de constater qu'il s'agissait du tout premier système stellaire composé d'un trou noir visible à l'œil nu ». En effet, ce système triple est si proche de nous que les étoiles qui le composent peuvent être observées à l'œil nu par temps clair et par nuit noire depuis l'hémisphère Sud. Par définition, le trou noir étant évidemment invisible !

    Pour déterminer l'existence de ce trou noir, les scientifiques se sont appuyés sur les observations du spectrographe du télescope MPG/ESO qui ont montré que l'une des deux étoiles visibles à l'œil nu orbitait, sur une période de 40 jours, autour d'un imperceptible objet, tandis que la seconde étoile se trouvait à plus grande distance de cette paire intérieure. L'équipe a pu détecter sa présence et déterminer sa masse en étudiant l'orbite de l'étoile composant la paire intérieure. « Un objet invisible doté d'une masse équivalant à 4 masses solaires ne peut être qu'un trou noir », conclut Thomas Rivinius. Il s'agit de l'un des tout premiers trous noirs de masse stellaire découvert à ce jour qui n'interagit pas violemment avec son environnement et qui, par voie de conséquence, nous apparaît véritablement noir.

    Cette découverte renforce l'idée que la Voie lactée abriterait bien plus que les quelques dizaines de trous noirs déjà détectés. Toutefois, les scientifiques estiment que, depuis la naissance de la Voie lactée, un nombre beaucoup plus élevé d'étoiles se sont effondrées en trous noirs à la fin de leur existence. La découverte d'un trou noir silencieux et invisible au sein du système HR 6819 offre des clés de détection spatiale de nombreux trous noirs dissimulés au sein de la Voie lactée. « Des centaines de millions de trous noirs doivent s'y trouver, mais nous n'en connaissons que très peu. Savoir ce qu'il faut chercher devrait nous permettre de mieux les détecter », ajoute Thomas Rivinius.

    Zoom sur le système triple HR 6819. En fin de vidéo, une animation montrant ce système triple composé du trou noir où figurent les orbites et les mouvements des objets composant ce système triple. HR 6819 est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir (trajectoire de couleur rouge). À mesure que nous nous éloignons de cette paire intérieure, nous apercevons l’objet le plus externe du système, une autre étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, YouTube

    La parole à Thomas Rivinius, scientifique de l'ESO et auteur principal de l’étude publiée ce jour au sein de la revue Astronomy & Astrophysics.

     

    Futura : Cette découverte vous a surpris, elle était très inattendue ?

    Thomas Rivinius : En effet.Nous cherchions quelque chose de tout à fait différent, n'attendant qu'un système stellaire binaire normal. Nous espérions que des observations détaillées nous aideraient à comprendre pourquoi les deux étoiles normales à l'intérieur sont si différentes : l'une (l'étoile extérieure Be) tourne si rapidement qu'elle s'envole presque (elle éjecte de la matière d'elle-même, principalement en raison de cette rotation rapide), et l'autre tourne très lentement.

    Puis, nous avons compris qu'il y avait en fait trois objets ! Je tiens à préciser qu'initialement, cette étude avait été menée par un collègue, Stan Štefl (décédé tragiquement dans un accident de voiture en 2014, c'est pourquoi l'étude a calé un peu à l'époque). Nous l'avons maintenant reprise à notre compte aussi parce que nous avons découvert récemment un système que nous pensons être un système triple similaire avec un trou noir nommé LB-1. De plus amples observations sont nécessaires pour confirmer notre intuition.

     

    Un trou noir dans un système triple, c'est plutôt surprenant ?

    Thomas Rivinius : Oui.Une curiosité même ! La plupart des modèles de l'évolution de ces étoiles et de l'explosion de la supernova elle-même prédiraient qu'un tel système serait perturbé et les objets individuels se sépareraient. Le fait que HR 6819 existe toujours en tant que système triple indique que cela ne se produit pas toujours.

    Devons-nous nous inquiéter de la découverte d'un trou noir aussi proche de la Terre ?

    Thomas Rivinius : Pour la Terre, pas vraiment. En tant que trou noir de masse stellaire, il ne fait que quelque dix kilomètres de diamètre. Donc, à ce stade, il ne représente même pas un danger pour son voisin immédiat, que nous appelons « l'étoile intérieure B » dans notre étude. Et les deux sont plus proches l'un de l'autre que le Soleil et la Terre. Cependant, à mesure que cette étoile intérieure évolue avec le temps, elle grandira, puis le trou noir commencera à en avaler au moins une partie. Mais c'est encore dans des millions d'années à venir, peut-être même des dizaines de millions d'années !

    Une autre question est de savoir si la supernova d'origine, qui a probablement formé ce trou noir, était dangereuse pour la Terre. Mais ce n'était probablement pas le cas, quand elle a explosé, il y a peut-être 15 à 70 millions d'années. Elle était également à plusieurs centaines de parsecs, pas beaucoup plus près que maintenant (310 pc). C'est considéré comme une distance de sécurité pour une supernova.

    Sur cette vue d’artiste figurent les orbites des objets composant le système triple HR 6819. Ce système est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir récemment découvert (trajectoire de couleur rouge), ainsi que d’une troisième étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, L. Calçada

    Sur cette vue d’artiste figurent les orbites des objets composant le système triple HR 6819. Ce système est constitué d’une binaire interne dotée d’une étoile (trajectoire de couleur bleue) et d’un trou noir récemment découvert (trajectoire de couleur rouge), ainsi que d’une troisième étoile décrivant une orbite plus étendue (également de couleur bleue). © ESO, L. Calçada 

     

    Qu'apporte la découverte de ce trou noir ?

    Thomas Rivinius : Le point le plus intéressant est que ce n'est probablement pas très spécial ! Il est assez proche, et à moins que nous ne considérions notre environnement local comme une exception, il doit y en avoir beaucoup d'autres. Nous n'en connaissons que quelques dizaines réparties un peu partout dans toute notre Galaxie, principalement parce qu'ils accumulent beaucoup de matière de leur environnement, ce qui les fait briller dans le rayonnement X. Nous estimons, cependant, qu'il doit y avoir des centaines de millions à un milliard de trous noirs supplémentaires dans la Voie lactée, qui ressemblent davantage à celui découvert dans ce système triple : calmes, car ils n'ont rien à accumuler et donc très difficiles à détecter.

     

    Le fait que le système soit si brillant et si proche l'ouvre à des investigations beaucoup plus détaillées que les systèmes plus éloignés ?

    Thomas Rivinius : Être si proche et brillant signifie que nous pourrons peut-être résoudre le système en ses composants individuels. Seule l'interférométrie a cette capacité qui consiste à combiner un certain nombre de télescopes de façon à obtenir une vue aussi nette que si vous aviez un télescope géant de la même taille que les télescopes individuels séparés. Dès que nos observatoires à Paranal recommenceront à fonctionner et que mon équipe pourra utiliser le VLTI (Very Large Télescope Interferometer), nous essaierons cela. Je suis vraiment impatient de le faire.

    Une deuxième possibilité est d'observer HR 6819 dans le X. Bien que ses émissions dans le X montrent que l'activité de ce trou noir est très calme, cela ne signifie pas que rien ne se passe ! Le trou noir accumule probablement quelque chose de l'environnement local, mais comme il est de faible densité, ses capacités à avaler de la matière sont forcément limitées. Toutes les autres observations que nous avons proviennent de trous noirs ayant des taux d'accrétion beaucoup plus élevés. Il reste à démontrer que tout fonctionne de la même manière, même à des taux d'accrétion très faibles, comme avec ce trou noir.

    Source: https://www.futura-sciences.com/sciences/actualites/trou-noir-decouverte-trou-noir-plus-proche-terre-connu-80887/#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura