Février

  • Actualité de l'astronomie du 24.02.2021 / La robotique d’exploration : une application uniquement spatiale ?

    La robotique d’exploration : une application uniquement spatiale ?

     

    Fanny Pégard

    Rédactrice Web

    Aucune description de photo disponible.

    Publié le 23/02/2021

    Les robots fascinent et alimentent parfois les idées fausses. Dans son troisième épisode de En vrai, EPITA vous propose de faire le point sur la robotique d'exploration, d'en comprendre les enjeux mais aussi les applications.

    Les robots ont souvent été utilisés au cinéma pour sauver le monde ou partir à la découverte de nouvelles planètes. Pourtant la réalité est bien différente de ce qui sort de l'imagination des plus grands réalisateurs.

    La robotique d'exploration décryptée dans En Vrai, par EPITA.

     

    La robotique d’exploration : un secteur en plein développement

    Le fort développement de la robotique d'exploration ouvre la possibilité à de nouvelles voies de recherches jusqu'alors jamais atteintes par les humains. Bardés de capteurs, les robots d'exploration vont pouvoir être utilisés dans différents milieux et servir à différentes applications. Robot d'exploration sous-marine, robot d'exploration terrestre, robot d'exploration aérienne, les possibilités sont immenses.

    VOIR AUSSIRetrouvez plus d'informations sur la démarche d'EPITA et la websérie « En vrai »

    Utiliser les robots pour collecter des informations

    La robotique d'exploration est un formidable outil de découverte et de recueil de données. En allant là où l'humain ne peut pas aller, le robot est le seul outil capable d'acquérir un maximum de données qui seront ensuite analysées et traitées par les hommes pour les mettre en application dans de multiples domaines (reconstruction 3D, mosaïque d'images...).

    La robotique d’exploration est déjà utilisée dans de nombreux secteurs d’activités comme la défense, l’agriculture, l’automobile mais aussi dans les services à la personne. © scharfsinn86, Adobe Stock.

    La robotique d’exploration est déjà utilisée dans de nombreux secteurs d’activités comme la défense, l’agriculture, l’automobile mais aussi dans les services à la personne. © scharfsinn86, Adobe Stock. 

    La robotique d’exploration : des usages scientifiques mais aussi quotidiens

    La robotique d'exploration est utilisée dans un premier temps dans la sphère scientifique et industrielle. Pourtant de plus en plus, la robotique d'exploration prend place dans notre vie quotidienne : voiture autonome, aide à la personne, gestion des catastrophes naturelles, robotique sociale...

    Des robots très utiles en cas de catastrophe

    On l'a dit, les robots permettent d'aller là où l'homme ne peut pas se rendre. Pourtant, pas besoin d'être dans l'espace ou au fond des océans pour trouver des exemples concrets. Récemment, l'incendie de Notre-Dame-de-Paris a fait appel aux robots d'exploration, comme les drones ou des robots terrestres afin de récolter des données et des images pour aider à la prise de décision dans le sauvetage de la cathédrale et de sa structure.

    La robotique, un secteur complexe mais passionnant

    La robotique fait appel à de nombreuses compétences et connaissances. C'est pour cela qu'EPITA offre la possibilité, grâce à sa Majeure Génie Informatique des Systèmes Temps Réel et Embarqués (GISTRE), de former des ingénieurs capables d'explorer de nouvelles voies et de repousser sans cesse les limites de la robotique d'exploration.

    Rendez-vous la semaine prochaine pour découvrir l'épisode 4 consacré à la réalité virtuelle et à la réalité augmentée.

    Article réalisé en collaboration avec le groupe IONIS.

    Source: https://www.futura-sciences.com/sciences/actualites/skillz-robotique-exploration-application-uniquement-spatiale-85903/?utm_content=buffere5bc8&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR3ARkpKvXw4fQnDtsCngDX8VlCdsfKpacxX7T5fnKJL22Hid4JVAaisfm4

  • Actualité de l'astronomie du 24.02.2021 / La destruction des étoiles par des trous noirs trahie par les neutrinos émis.

    La destruction des étoiles par des trous noirs trahie par les neutrinos émis

     

    Laurent Sacco

    Journaliste

    Aucune description de photo disponible.

    Publié le 23/02/2021

     [EN VIDÉO] Un trou noir pourrait-il entrer en collision avec la Terre ?  Un trou noir est une région de l’espace dont rien ne peut s'échapper, pas même la lumière. Il est donc naturel de se demander si ce type d’objet pourrait être une menace pour notre planète. Futura-Sciences a interviewé Jean-Pierre Luminet, astrophysicien de renom, qui nous répond ici en vidéo. 

     

    L'astronomie des neutrinos a fait de grands progrès ces dernières décennies et, après la détection des neutrinos solaires et des supernovae, elle se connecte de plus en plus aujourd'hui à l'astrophysique des trous noirs. On commence à observer les neutrinos émis par les étoiles détruites par les forces de marée des trous noirs supermassifs.

    Une large équipe internationale de chercheurs en physique des astroparticules vient de publier dans Nature Astronomy deux articles dont des versions se trouvent en accès libre sur arXiv et qui vont probablement intéresser Jean-Pierre Luminet.

    Certes, la découverte exposée n'est pas directement liée aux mystères de l'écume de l’espace-temps qu'il explore dans son dernier ouvrage mais elle concerne tout de même les travaux qu'il a menés avec Brandon Carter il y a presque 40 ans. Les deux astrophysiciens relativistes, tout deux à l'Observatoire de Paris à cette époque, ont été les pionniers de ce que l'on appelle en anglais le phénomène de Tidal disruption event (ou TDE), ce qui peut se traduire par « évènement de rupture par effet de marée ».

    Comme le montre leur publication dans le célèbre journal Nature en 1982, suivie d'une autre dans Astronomy & Astrophysics en 1983, un TDE se produit avec une étoile dont la trajectoire trop rapprochée d'un trou noir supermassif conduit ses forces de marée à comprimer l'étoile jusqu'à produire ce qu'ils ont appelé une crêpe stellaire à cause de la forme de la déformation causée par ces forces. L'étoile pouvait finir par exploser en réponse et ses débris étaient donc avalés en partie par l'astre compact.

    Une vue d'artiste d'un TDE. © Deutsches Elektronen-Synchrotron

    L'explosion étant similaire à celle d'une supernova génitrice d'une étoile à neutrons ou d'un trou noir stellaire, on pouvait s'attendre à ce qu'un copieux flux de neutrinos soit émis. On pouvait aussi s'attendre à la production de neutrinos particulièrement énergétiques car les abords d'un trou noir de Kerr en rotation ont de bonnes raisons de se comporter comme un accélérateur de particules géant. Comme un trou noir supermassif est un monstre gorgé d'énergie de masse et d'énergie de rotation, indépendamment de l'existence de TDE, on suppose depuis des décennies que ces trous noirs géants sont probablement à l'origine des rayons cosmiques à ultra-haute énergie (UHECR) que l'on détecte sur Terre.

    Rappelons que les neutrinos sont électriquement neutres, contrairement aux particules chargées tels les protons, les positrons ou les noyaux d'hélium qui sont chaotiquement déviés au point de se déplacer comme s'ils étaient ivres dans les champs magnétiques galactiques et intergalactiques, les neutrinos sont aussi très pénétrants au point de pouvoir traverser la Terre sans généralement interagir avec les autres particules de matière. Ils sont générés dans des processus à haute énergie en particulier et, en les observant, contrairement donc aux autres rayons cosmiques matériels, on peut déterminer avec assurance de quelle portion de la voûte céleste et donc de quel objet ils ont été émis.

    Cette astronomie neutrino complète donc idéalement celles faites avec les ondes électromagnétiques et gravitationnelles pour faire de l'astronomie multimessager. Plusieurs instruments pour explorer le domaine de l'astronomie des neutrinos ont ainsi été construits, notamment l'IceCube Neutrino Observatory dans les glaces de l’Antarctique.

    Olivier Drapier, chercheur au Laboratoire Leprince-Ringuet de l’École polytechnique, CNRS, nous parle des neutrinos, ces particules de matière que l'on peut utiliser pour étudier les étoiles et l'Univers. © École polytechnique

    L'Antarctique et sa glace, un détecteur géant de neutrinos cosmiques

    Comme l'expliquent donc les deux articles publiés dans Nature (le premier octobre 2019), les glaces de l'Antarctique ont été témoins de l'événement IceCube-191001A, c'est-à-dire en l'occurrence du passage d'un neutrinos porteur d'une énergie évaluée à environ 100 TeV, soit presque 10 fois supérieure à celle des collisions de protons que l'on peut réaliser sur Terre avec le LHC, le plus puissant accélérateur de particules jamais construit par la noosphère -- on pourrait convertir toute cette énergie d'une seule particule en environ 100.000 protons au repos puisque la masse d'un proton en unité d'énergie est de 1 GeV, soit 0.001 TeV.

    Dans le cadre du programme de recherche en astronomie multimessager, le Zwicky Transient Facility (ZTF), un télescope  robotique  à l'observatoire Palomar utilisé par le célèbre Caltech en Californie du Sud, a rapidement trouvé une contrepartie dans le domaine des ondes électromagnétiques. Mieux, cette contrepartie -- une galaxie située dans la constellation du Dauphin à environ 700 millions d'années-lumière de la Voie lactée et cataloguée sous la référence 2MASX J20570298 + 1412165 -- avait déjà attiré l'attention d'astrophysiciens le 9 avril 2019 puisque le ZTF y avait révélé l'occurrence d'un TDE clairement associé à la présence dans la galaxie d'un trou noir supermassif contenant probablement 30 millions de masses solaires (le trou noir de la Voie lactée n'en contient que 4 millions).

    Une présentation de IceCube chassant les neutrinos de haute énergie pour déterminer notamment leurs origines. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © IceCube Collaboration/NSF

    Nommé AT2019dsg, il avait été étudié dans plusieurs bandes du spectre électromagnétique, des ondes radios aux rayons X et, à la suite des observations de IceCube, l'équipe dirigée par le physicien Robert Stein du laboratoire DESY (Deutsches Elektronen-Synchrotron, synchrotron allemand à électrons) en est donc arrivée la conclusion exprimée par le chercheur en ces termes : « Il s'agit du premier neutrino lié à un TDE. Ces événements ne sont pas bien compris. La détection du neutrino indique l'existence d'un moteur central et puissant à proximité du disque d'accrétion, crachant des particules rapides. Et l'analyse combinée des données des télescopes radio, optique et ultraviolet nous donne une preuve supplémentaire que le TDE agit comme un gigantesque accélérateur de particules ».

    Plus de 30 TDE ont été observés au total ces dernières années et, selon le célèbre Francis Halzen, professeur à l'Université du Wisconsin-Madison et chercheur principal d'IceCube, mais qui n'a pas été directement impliqué dans cette découverte récente : « Nous ne voyons peut-être que la pointe émergée d'un iceberg. À l'avenir, nous nous attendons à trouver de nombreuses autres associations entre les neutrinos de haute énergie et leurs sources. Une nouvelle génération de télescopes est en cours de construction qui offrira une plus grande sensibilité aux TDE et à d'autres sources de neutrinos ».

    Le satellite Swift de la Nasa a aussi vu le TDE générateur de neutrinos et dans cette vidéo les chercheurs précisent les modèles proposés pour les produire. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © NASA Goddard

    Source: https://www.futura-sciences.com/sciences/actualites/trou-noir-destruction-etoiles-trous-noirs-trahie-neutrinos-emis-59784/?utm_content=bufferb529e&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR0atldPV2KCbvetDKZSWShn1y8qVfgLXAOuui4MVvC6gIA3emDp1TzJV1g

  • Actualité de l'astronomie du 21.02.2021 / Des ondes gravitationnelles seraient détectables avec des missions à destination de Neptune.

    Des ondes gravitationnelles seraient détectables avec des missions à destination de Neptune

     

    Laurent Sacco

    Journaliste

    Peut être une image de planète

    Publié le 14/02/2021

     [EN VIDÉO] Interview : comment mesurer les ondes gravitationnelles ?  Les ondes gravitationnelles sont des déformations de l’espace-temps prédites par Einstein. Il serait possible de les mesurer avec des outils appropriés. L’éditeur littéraire Dunod a interviewé Pierre Binétruy, professeur au laboratoire Astroparticule et Cosmologie de l'université Paris Diderot, afin d’en savoir plus sur ces mystérieuses ondes et sur la façon dont on pourrait les détecter. 

    En traversant le Système solaire, des ondes gravitationnelles modifieraient les trajectoires des ondes radio connectées aux futures sondes spatiales à destination de Neptune et Uranus. On pourrait détecter avec ces sondes les ondes gravitationnelles issues d'événements appelés EMRI. Elles seraient une mine d'informations pour la cosmologie et la théorie des trous noirs relevant peut-être d'une nouvelle physique.

    Il y a cinq ans, nous sommes entrés dans l'ère de l'astronomie gravitationnelle et peu de temps après, l'astronomie multimessager a fait un nouveau bond avec l'observation des ondes gravitationnelles et électromagnétiques d'une kilonova. Les perspectives de détections des ondes gravitationnelles ne cessent de s'ouvrir et pas uniquement avec des interféromètres utilisant des rayons laser comme Virgo et Ligo. On peut citer à cet égard la collaboration NANOGrav (North American Nanohertz Observatory for Gravitationnal Waves).

    Si ces détecteurs ont déjà mis en évidence des collisions de trous noirs dans des systèmes binaires, ce ne sont que des trous noirs stellaires. On attend beaucoup d'un autre interféromètre qui, lui, devrait se trouver dans l'espace à l'horizon des années 2030 : eLisa.

    Avec lui on devrait pouvoir détecter des collisions de trous noirs supermassifs et aussi ce que les astrophysiciens relativistes ont baptisé des événements de la classe des « extreme mass ratio inspirals » (EMRI). En effet eLisa est sensible à des ondes gravitationnelles de basses fréquences que ne peuvent détecter des instruments terrestres comme Ligo et Virgo. De quoi s'agit-il ?

     

    Les ondes gravitationnelles et les « extreme mass ratio inspirals »

    Rien de très mystérieux, il s'agirait d'une étoile à neutrons ou d'un trou noir stellaire (voir intermédiaire de faible masse) qui se trouverait en orbite autour d'un trou noir supermassif. Bien qu'à beaucoup plus grande distance de ce trou noir qu'il ne le serait avec un autre objet compact d'origine stellaire, donc contenant moins de 100 masses solaires, la présence d'un trou noir supermassif dépassant le million de masses solaires en ferait tout de même une puissante source d'ondes gravitationnelles à cause du rapport de masse extrême entre les deux objets.

    Elle le serait alors qu'en vertu d'une des lois de Kepler la période orbitale de l'astre compact le moins massif est encore longue, et qu'il lui faudrait boucler encore 10.000 orbites environ en spirale en perdant de l'énergie sous forme d'ondes gravitationnelles avant d'entrer en collision avec le trou noir supermassif.

    Une simulation crédible de la trajectoire d'un trou noir intermédiaire contenant 270 masses solaires autour d'un trou noir supermassif contenant trois millions de masses solaires. Le signal des ondes gravitationnelles monte en fréquence alors que les deux objets se rapprochent comme sa transcription dans le domaine sonore l'illustre bien. © Steve Drasco

    Les astrophysiciens relativistes ont montré que le petit corps compact se comporterait alors comme une sonde ayant tout le temps de cartographier avec précision la structure du champ de gravitation autour du géant, qui serait un trou noir de Kerr en rotation. Il deviendrait alors possible de tester fortement la théorie des trous noirs et donc indirectement la théorie de la relativité générale d'Einstein. Plusieurs variantes d'une théorie relativiste de la gravitation avec un espace-temps courbe gouverné par d'autres équations que celles d'Einstein, par exemple en relation avec la théorie des supercordes, ont en effet été découvertes. Mieux, nous pourrions peut-être découvrir que les trous noirs supermassifs sont en fait des trous de ver.

    En bonus, l'émission d'ondes avec un EMRI permet de remonter précisément à la masse et au moment cinétique d'un trou noir supermassif. En dressant des statistiques avec de nombreuses sources, on peut alors poser des contraintes sur l'origine et le mode de croissance des trous noirs supermassifs. Or, c'est une importante fenêtre sur l'histoire des galaxies.

    La cosmologie est elle aussi impactée par des découvertes d'EMRI car on peut tirer du signal gravitationnel une estimation directe de la distance du trou noir supermassif impliqué dans une galaxie, dont on peut mesurer le décalage spectral. Plutôt que de s'appuyer sur une échelle de méthodes pour mesurer les distances cosmologiques, méthodes introduisant chacune une erreur, des mesures directes fourniraient des estimations de la constante de Hubble plus précises et donc susceptibles de révolutionner notre détermination de la nature de l'énergie noire accélérant l'expansion du cosmos observable.

    Une image de synthèse représentant un modèle de la courbure de l'espace d'un petit objet compact en orbite rapproché autour d'un trou noir supermassif, déformant lui aussi l'espace-temps. © Nasa

    Une image de synthèse représentant un modèle de la courbure de l'espace d'un petit objet compact en orbite rapproché autour d'un trou noir supermassif, déformant lui aussi l'espace-temps. © Nasa 

     

    Un effet Doppler pour détecter les ondes gravitationnelles

    Aujourd'hui, une équipe internationale d'astrophysiciens menée par Deniz Soyuer de l'université de Zurich, en Suisse, vient de publier un intéressant article disponible en accès libre sur arXiv renouvelant une idée déjà mise en pratique depuis presque 50 ans, et plus précisément depuis le lancement de la célèbre mission Pioneer 11 qui survola Jupiter puis Saturne.

    On peut montrer que le passage d'une onde gravitationnelle dans le Système solaire va modifier la propagation des ondes radio entre la Terre et une sonde telle Pioneer 11 ou New Horizons, comme elle le fait pour les faisceaux laser de Ligo et Virgo. Un décalage Doppler en résulte mais il est très faible et facilement dégradé et bruité. De fait, aucune des missions longue distance telle Cassini n'a mis en évidence cet effet à ce jour.

    Mais, selon Soyuer, les progrès technologiques changent la donne et les prochaines missions de la Nasa envisagées en direction d'Uranus et surtout de Neptune, comme la mission Trident, pourraient détecter les ondes gravitationnelles associées aux EMRI à l'horizon des années 2030 et donc servir de complément à eLisa.

    Source: https://www.futura-sciences.com/sciences/actualites/ondes-gravitationnelles-ondes-gravitationnelles-seraient-detectables-missions-destination-neptune-85679/?fbclid=IwAR0dRfvXGj937hA86qOZ3QpZb-cjt0K5XSYXalDValMjQ2YOvf0jK_9HM5E&utm_content=buffer2d93c&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • Actualité de l'astronomie du 21.02.2021 / Perseverance : qu'est-ce que la SuperCam ?

    Perseverance : qu'est-ce que la SuperCam ?

    Rémy Decourt

    Journaliste

    Aucune description de photo disponible.

    Publié le 20/02/2021

     [EN VIDÉO] Perseverance : découvrez l'instrument SuperCam, ses yeux et ses oreilles  Présentation de l'instrument SuperCam qui équipe le rover Perseverance de la Nasa. Plus de 300 personnes en France ont été impliquées dans son développement et sa fabrication. SuperCam réalisera des tirs lasers dont l'objectif est d'analyser la composition chimique des roches et de détecter la présence éventuelle de molécules organiques. 

     

    SuperCam, un des principaux instruments installés à bord du rover Perseverance a pour objectifs de chercher des traces de vie fossile et d'identifier les échantillons qui pourraient revenir sur Terre. Francis Rocard, responsable des Programmes d'Exploration du Système solaire au Cnes (maître d'ouvrage de la partie française de l'instrument) nous explique son fonctionnement et les attentes des scientifiques. Passionnant.

    Parmi les sept instruments scientifiques de la mission Perseverance se trouve l'instrument SuperCam développé conjointement par un ensemble de laboratoires (Irap, Lesia, Latmos, LAB, IAS, Isae), universités et industriels français et américains (Lanl). Cet instrument, qui est la version boostée de ChemCam à bord du rover Curiosity de la Nasa, est conçu pour « chercher des traces de vie éteintes sur la Planète rouge et identifier les échantillons les plus intéressants à rapporter sur Terre », nous explique Francis Rocard, responsable des Programmes d'Exploration du Système solaire au Cnes (maître d'ouvrage de la partie française de l'instrument).

    SuperCam est une évolution par rapport à ChemCam dont « il hérite du procédé Libs (en français spectroscopie de plasma induit par laser) qui consiste à utiliser un laser pour vaporiser le matériau à étudier, puis à analyser par spectrométrie la lumière émise par le plasma ainsi créé pour en déterminer la composition élémentaire, atome par atome ». Alors que ChemCam utilisait « seulement » le Libs pour déterminer la composition des roches et des sols, SuperCam intègre deux autres techniques d'analyse à distance, la spectrométrie Raman et l'infrarouge passif, ce qui va lui permettre d'acquérir des informations sur « la composition minéralogie et moléculaire, voire la présence éventuelle de matière organique sur la roche étudiée ».

     

    Le saviez-vous ?

    Les différentes techniques d'analyse de SuperCam fonctionnent à distance : jusqu’à 7 mètres pour le Libs, 12 mètres pour le Raman, et jusqu’à l’horizon pour la spectroscopie IR et l’imagerie. 

    Installation de SuperCam sur le mat du rover Perseverance. © Nasa, JPL, Cnes

    Installation de SuperCam sur le mat du rover Perseverance. © Nasa, JPL, Cnes 

    Deux autres nouveautés sont à signaler. La caméra de contexte, en noir et blanc sur ChemCam, sera en couleur. « Elle photographiera en haute résolution les cibles analysées. » Un microphone, fourni par l'Isae-Supaéro, a été installé sur l'instrument, ce qui aidera à mieux connaître les propriétés mécaniques des roches en étudiant les sons associés aux impacts laser sur la roche martienne qui seront différents en fonction de la dureté et de la quantité de minéral abrasé.

    « L'interprétation des sons (les tic-tic des impacts laser contre la roche) donnera des indications sur la structure et la dureté de la roche ». Ce microphone sera également utilisé pour écouter les vents martiens ainsi que les sons et bruits du rover, ce qui devrait aider les contrôleurs au sol à surveiller l'état de fonctionnement de Perseverance.

    L'instrument SuperCam installé sur le rover Perseverance. La photographie a été prise en juillet 2019 dans les installations du JPL, à Pasadena en Californie. © Nasa, Cnes, JPL-Caltech

    L'instrument SuperCam installé sur le rover Perseverance. La photographie a été prise en juillet 2019 dans les installations du JPL, à Pasadena en Californie. © Nasa, Cnes, JPL-Caltech 

     

    Identifier les échantillons à rapporter sur Terre

    Parmi les sept instruments du rover, SuperCam sera le seul à pouvoir effectuer des mesures au-delà d'un périmètre de deux mètres. Il sera donc utilisé pour guider Perseverance en direction des roches « identifiées comme intéressantes » qui seront ensuite étudiées de près par les instruments de contact (Pixl et Sherloc) et sur lesquelles seront prélevés des échantillons. En fonction des résultats, l'équipe du rover « décidera de leur intérêt scientifique et s'il faut réaliser un prélèvement afin de le rapporter sur Terre ». Dans ce cas, un « carottage sera réalisé et l'échantillon placé dans un des 36 tubes ». Ces échantillons seront récupérés par le Fetch rover de l’ESA qui sera lancé en 2026 sur l'atterrisseur américain équipé du MAV...

    VOIR AUSSIPerseverance embarque deux micros qui nous feront entendre les sons de Mars pour la première fois

    Après les missions Viking de la Nasa (1976), les scientifiques ne cherchent plus la vie « vivante » en surface : « Nous estimons qu'elle n'existe pas en surface ou dans les premiers mètres du sous-sol ». Si elle existe, elle « pourrait se situer dans des niches biologiques situées à deux ou trois kilomètres de profondeur », voire avoir « un lien avec les émissions de méthane détectées dans l'atmosphère martienne ». Cependant, ces émissions « nous rendent perplexes car, certes, elles pourraient trahir l'existence de micro-organismes mais d'autres explications non liées à la vie sont également possibles, et les mesures actuelles ne permettent pas de trancher ».

    Principe de fonctionnement de SuperCam. Concrètement, le Libs sublime, avec un laser pulsé, les roches afin de déterminer la composition élémentaire. Cela a aussi pour effet de dépoussiérer la roche autour de l’impact et de la mettre à nu, ce qui va permettre aux mesures Raman et infrarouge de déterminer la nature des molécules et la composition minéralogique des minéraux. Cette image montre la zone d'impact de plusieurs tirs laser pulsé effectués par l'instrument ChemCam de Curiosity. © Nasa/JPL-Caltech/Lanl/Cnes/Irap

    Principe de fonctionnement de SuperCam. Concrètement, le Libs sublime, avec un laser pulsé, les roches afin de déterminer la composition élémentaire. Cela a aussi pour effet de dépoussiérer la roche autour de l’impact et de la mettre à nu, ce qui va permettre aux mesures Raman et infrarouge de déterminer la nature des molécules et la composition minéralogique des minéraux. Cette image montre la zone d'impact de plusieurs tirs laser pulsé effectués par l'instrument ChemCam de Curiosity. © Nasa/JPL-Caltech/Lanl/Cnes/Irap 

    Depuis 1976, la stratégie de la Nasa, du Cnes et de l'ESA est de « chercher des traces anciennes de vie éteinte en [se] basant sur les caractéristiques intrinsèques de la vie terrestre, seul exemple de vie que nous connaissons ». La tâche est tout sauf simple car le vivant n'est pas la seule source de matière organique. Les comètes ou les astéroïdes sont aussi des sources potentielles ! Après 8 ans d'exploration, Curiosity a certes montré que le cratère Gale avait été un habitable dans un lointain passé, qui se mesure en milliards d'années, mais sans pouvoir préciser pendant combien de temps. Mais, s'il a bien trouvé de la matière et des composés organiques, il n'a pas été possible d'en déterminer l'origine biologique ou minérale. Parmi les exemples de biosignatures que devrait chercher Perseverance, on citera les « molécules prébiotiques dont on sait que sur Terre le biologique les synthétise tels les acides aminés et les protéines » ou bien la mesure du rapport isotopique 12C/13C qui oscille en 89 (origine minérale) et 91-92 (origine biologique).

    Emplacements des sept instruments de Perseverance. © Nasa, JPL-Caltech

    Emplacements des sept instruments de Perseverance. © Nasa, JPL-Caltech 

    Dernier exemple, la « découverte de molécules chirales » dont certaines, comme quelques acides aminés sont « chimiquement identiques mais sont symétriques dans un miroir (comme les mains par exemple) ». Alors que le minéral produit les 2 formes en quantité égale, en se développant, la vie a sélectionné et favorisé une seule des deux formes, de sorte que « la mesure de la chiralité serait un indice fort sur l'existence passée d'une vie sur Mars ». À suivre donc.

     

    CE QU'IL FAUT RETENIR

    SuperCam est une évolution par rapport à ChemCam.

    Il aidera à identifier les échantillons qui seront rapportés sur Terre.

    Il cherchera des traces de vie éteintes.

    Il intègre deux techniques d’analyse à distance que n'a pas ChemCam : la spectrométrie Raman et l’infrarouge passif. 

    Source: https://www.futura-sciences.com/sciences/actualites/mars-perseverance-quest-ce-supercam-82180/?utm_content=buffer02a48&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR047b5WzEMZRPDmaGAal_3iUQsrMTAs5pnyiQEUsYd6aE3OYOK4NACSy0o

  • Actualité de l'astronomie du 21.02.2021 / Des restes de planètes désintégrées découverts autour de naines blanches.

    Des restes de planètes désintégrées découverts autour de naines blanches

     

     

    Laurent Sacco

    Journaliste

    Peut être une image de texte qui dit ’Une vue d'artiste de restes de croutes planétaires se désintégrant sous| 'action des forces des marées autour d'une naine blanche et roide matériau disque vaporise près étoile centrale et plonge sous l'effet de gravité dans atmosphère naine blanche niversité Warwick, Mark Garlick Fermer’

    Publié le 16/02/2021

    L'étude des atmosphères des cadavres d'étoiles que sont les naines blanches avait déjà permis de découvrir des traces de cadavres de planètes rocheuses, mais c'est la première fois que l'on trouve une preuve convaincante des restes vaporisés dans ces atmosphères de la croûte d'une exoterre.

    Cela vous intéressera aussi

     [EN VIDÉO] Mission Gaia : la Voie lactée bientôt cartographiée  La mission Gaia de l'ESA a mesuré les positions et les vitesses d'un milliard d'étoiles dans la Voie lactée. Cela va permettre de reconstituer l'histoire de notre Galaxie, de mieux connaître sa structure mais aussi de partir à la chasse à la matière noire et aux exoplanètes. 

     

    Le prix Nobel de physique 2019 a récompensé les Suisses Michel Mayor et Didier Queloz pour leur découverte de la première exoplanète autour d'une étoile sur la séquence principale. Depuis plus d'un quart de siècle, le nombre de détections de ces astres a été grandissant. De plus, contrairement à ce que l'on pouvait croire il y a encore 100 ans, lorsque l'on pensait le modèle cosmogonique de Kant-Laplace réfuté et le modèle de naissance des planètes lors de rares rencontres rapprochées entre les étoiles favorisé (voir le traité d’Harold Jeffreys sur ces questions), nous savons que la formation planétaire est aussi inévitable que la naissance des étoiles.

    En bonus, les instruments désormais à la disposition de la noosphère non seulement nous montrent divers stades d'évolution des disques protoplanétaires où naissent des Jupiter chaudes, des superterres et même des exocomètes - nous permettant également de préciser nos modèles de la naissance du Système solaire -, mais ces yeux de l'Humanité nous montrent aussi le destin que peut attendre la Terre lorsque le Soleil aura atteint le stade de naine blanche après celui de géante rouge.

    Extrait du documentaire Du Big bang au Vivant (ECP Productions, 2010), Jean-Pierre Luminet parle de l'évolution des étoiles de type solaire, leur transformation en géantes rouges puis en naines blanches. © Jean-Pierre Luminet

    Rappelons à ce sujet que la majorité des étoiles dans la Voie lactée sont des naines, des rouges en particulier comme Proxima Centauri ou Trappist-1. Il y a aussi de nombreuses naines jaunes comme notre Soleil. Elles partageront toutes un destin commun avec les étoiles de moins de huit masses solaires, elles ne finiront pas en supernovae SN II. Elles finiront toutefois par mourir en épuisant leur carburant nucléaire et elles se transformeront alors en naines blanches, une fois les réactions thermonucléaires de type proton-proton et CNO devenues impossibles.

    Si les astronomes ont fait la découverte des naines blanches au XVIIIe siècle, ils n'ont commencé à se rendre compte à quel point ces astres étaient exotiques qu'au tout début du XXe siècle avec la détermination de l'extraordinaire densité des naines blanches. Une valeur de l'ordre de la tonne par centimètre cube fut en effet déduite de l'observation d'étoiles comme Sirius B.

    La mécanique quantique jointe à la théorie de la relativité restreinte explique cet état de la matière dans une naine blanche. Ces mêmes lois de la physique vont la forcer à se cristalliser à force de se refroidir, donnant des sortes de diamants de la taille de la Terre à partir de leur noyau très riche en carbone (un cristal de Wigner pour être précis). Certaines finiront parfois sous forme de supernovae SN Ia lorsqu'elles sont en couple dans un système binaire.

     

    Que deviendra la Terre lorsque le Soleil deviendra une géante rouge ?

    La théorie de l'évolution stellaire, amplement vérifiée par les observations, nous dit que les couches supérieures du Soleil en phase géante rouge pourraient bien atteindre l'orbite de la Terre qui sera donc soumise à des températures élevées. Certainement aussi en raison de la modification du champ de gravité du Soleil, puisqu'il se sera dilaté, on peut s'attendre à des modifications des orbites des corps célestes du Système solaire. D'importantes collisions pourraient alors se produire.

    De fait, comme Futura l'expliquait dans le précédent article ci-dessous, en analysant l'atmosphère de la naine blanche NLTT 43806, des astrophysiciens y ont trouvé des traces d'anomalie chimique montrant que des matériaux planétaires, vraisemblablement issus d'une collision entre une exoterre et une exothéia, étaient tombés à la surface de la naine blanche.

    D'autres cas de « contamination » d'atmosphères de naines blanches trahissant des destructions d'exoplanètes ont été démontrés mais, jusqu'à présent, il s'agissait surtout de traces de cœur et de manteau rocheux d'exoplanètes défuntes. Malgré l'exemple de NLTT 43806, on avait pas encore de preuves convaincantes de l'existence de restes des roches constituant la croûte d'une exoterre.

    Une vue d'artiste de la naissance et de la mort du Système solaire. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Nasa

    Cela vient de changer comme le prouve la publication d'un article dans Nature Astronomy dont on peut trouver une version en accès libre sur arXiv et qui est le fruit du travail d'une équipe internationale de chercheurs, menée par des membres de l'Université de Warwick.

    Les chercheurs ont dépouillé des données spectrales concernant l'atmosphère de plusieurs naines blanches dans les catalogues d'observations menées avec le satellite Gaia de l'ESA et les instruments au sol du fameux Sloan Digital Sky Survey. Il est possible avec ces données de déterminer la présence et les abondances des éléments chimiques. En l'occurrence, les chercheurs ont trouvé dans plusieurs des atmosphères de ces naines blanches des anomalies concernant ces abondances, c'est-à-dire des contradictions entre les faits et les prédictions de la composition chimique des naines blanches basées sur la théorie de l'évolution stellaire.

    Ces anomalies reposent en premier lieu sur la détection des raies spectrales du lithium et du potassium et la comparaison des abondances de ces éléments avec celles déduites de la même manière des raies du sodium et du calcium. Un joli exercice qu'aurait sans doute apprécié à sa juste valeur le regretté Jean-Claude Pecker, grand spécialiste de l'étude des atmosphères stellaires.

     

    Une chute continuelle de débris d'exoterre ?

    Les astrochimistes ont constaté que le rapport des éléments correspondait à la composition chimique de la croûte de planètes rocheuses comme la Terre et Mars, si ces croûtes étaient vaporisées et mélangées dans les couches extérieures gazeuses de l'étoile pendant 2 millions d'années. C'est la première fois que l'on obtient une preuve convaincante de l'existence de ce matériau crustale car le lithium et le potassium sont présents en faible quantité comparativement aux roches du manteau ou du cœur de la Terre et aussi, on le pense, d'autres planètes telluriques du Système solaire. Auparavant, on n'avait pas utilisé de mesures concernant des naines blanches suffisamment refroidies pour voir clairement ce signal dans les atmosphères.

    Une vue d'artiste de la collision entre la jeune Terre et Théia. © Nasa, JPL-Caltech

    Une vue d'artiste de la collision entre la jeune Terre et Théia. © Nasa, JPL-Caltech 

    Les quantités de lithium et de potassium déterminées dans plusieurs naines blanches sont équivalentes à celles contenues dans des astéroïdes du Système solaire dont la composition est proche de celle de la croûte terrestre, et qui aurait quelques dizaines de kilomètres de rayon.

    Les chercheurs en tirent la conclusion que les quantités mesurées viennent non pas de l'accrétion d'une planète rocheuse entière mais de petits corps célestes issus de la destruction d'une telle planète.

    Dans le cas de l'une des naines blanches considérées, sa masse - plus de 70 % plus élevée que la moyenne - implique un champ de gravitation qui aurait dû faire sédimenter les noyaux de lithium et de potassium dans l'étoile et donc les faire disparaître de son atmosphère.

    Il faut donc faire intervenir un apport continuel, ce qui suggère la présence d'un disque de débris proche, peut-être issus de la destruction d'une exoterre par les forces de marée de la naine blanche. De fait, la naine blanche en question rayonne plus dans l'infrarouge qu'elle ne le devrait, sauf à postuler un disque de poussières chauffées par le rayonnement de la naine blanche dont la surface dépasse la température de celle du Soleil et qui re-rayonnerait ensuite dans l'infrarouge.

    Nous ne sommes qu'au début de ce genre d'études. Tout comme Gaia permet de faire de l'archéologie galactique, l'étude des atmosphères des naines blanches nous permet donc de faire de l'archéologie des planètes disparues.

     

     

    Source: https://www.futura-sciences.com/sciences/actualites/astronomie-restes-planetes-desintegrees-decouverts-autour-naines-blanches-32869/?fbclid=IwAR1ObKg32CHsQ44st19M7tQlGBUBLVDv0WPl6efiJVOUWFnbQSnXX24xEtc&utm_content=buffer12c9e&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

×