Créer un site internet

ondes gravitationnelles

  • LE 10.05.2020: Actualité de l'astronomie / Les ondes gravitationnelles pourraient révéler la présence du quagma dans les étoiles à neutrons.

    Les ondes gravitationnelles pourraient révéler la présence du quagma dans les étoiles à neutrons

     

    Laurent Sacco

    Journaliste

     

    Lors de la fusion de deux étoiles à neutrons les pressions et les températures atteintes pourraient conduire les quarks et les gluons confinés dans les protons et les neutrons à se transformer en un plasma appelé parfois quagma. Cette transition de phase produirait des ondes gravitationnelles caractéristiques prouvant son occurrence.

     

     

    L'Univers observable est un laboratoire de physique des hautes énergies où la nature mène en quelque sorte pour nous des expériences que nous ne pouvons pas mener sur Terre ou difficilement. Cela fait, par exemple, des décennies que les astrophysiciens relativistes échangent des idées avec les physiciens nucléaires pour mieux comprendre tout à la fois la physique des étoiles à neutrons et celle des noyaux sur Terre dans des conditions de températures et de pressions extrêmes qui régnaient aussi au moment du Big Bang.

    Pour ces chercheurs, l'ouverture de l'ère de l'astronomie gravitationnelle, avec la détection directe sur Terre des ondes gravitationnelles par les membres des collaborations Ligo et Virgo, a été une formidable nouvelle. Leur excitation a sans doute été à son comble quand ces mêmes membres ont annoncé la détection de la source GW170817, car il est rapidement devenu clair qu'il s'agissait d'une collision d'étoiles à neutrons produisant une kilonova.

     

    Des kilonovae aux quarks

    En effet, ces astres sont transparents aux ondes gravitationnelles qu'ils émettent, elles portent codées en elles de nombreuses informations sur leur structure et leur composition. Extrêmement compacts, d'un diamètre de quelques dizaines de kilomètres, ils sont si denses qu'une cuillerée à café de leur matière peut peser jusqu'à un milliard de tonnes environ. Pour les décrire on doit donc aussi bien utiliser les équations de la relativité générale et des modèles d'astrophysique relativiste - on peut les trouver dans le fameux ouvrage Gravitation que le prix Nobel de physique Kip Thorne avait coécrit et publié en 1973 avec ses collègues John Wheeler et Charles Misner - que des modèles décrivant ce que l'on appelle l'équation d'état de la matière nucléaire. Les étoiles à neutrons deviennent alors une sorte de banc d'essai où tester la théorie de la relativité générale d’Einstein et obtenir des précisions sur l'équation d'état de la matière nucléaire et la physique qui la détermine.

    La saga de la détection de GW170817. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Science vs Cinema

    En l'occurrence, cette physique repose sur la théorie des quarks proposée indépendamment par George Zweig et Murray Gell-Mann en 1964. Cette théorie a ensuite été complétée au début des années 1970 par Gell-Mann et Harald Fritzsch, alors que les données expérimentales commençaient à fournir des preuves incontestables de la structure en quarks des protons et des neutrons en particulier, et plus généralement de ce que l'on appelle des hadrons. En effet, en 1972, les deux physiciens ont fini par découvrir les équations de la QCD (la chromodynamique quantique) qui gouverne les forces nucléaires entre les quarks en introduisant des cousins du photon, les gluons.

    L'année suivante, en 1973, Gross, Politzer et Wilczek découvrent aussi la liberté asymptotique découlant de ces équations et impliquant que les forces entre quarks ne font qu'augmenter si l'on essaie de les séparer, tant et si bien que l'énergie utilisée pour tenter de le faire provoque la formation de nouveaux quarks qui se lient rapidement en donnant des hadrons.

    Cela va mettre fin aux doutes sur la théorie des quarks car, curieusement dans les expériences, ces nouvelles particules ne pouvaient pas être isolées ni observées séparément comme c'est le cas pour les composants des atomesélectrons et nucléons. Les collisions d'hadrons, supposés être formés de quarks, ne donnaient jamais que des hadrons.

    Une présentation du quagma. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Fermilab

     

    Des quarks et des gluons confinés dans des hadrons

    Toutefois, la QCD nous dit aussi que dans un gaz de protons et de neutrons comprimé et porté à une température 100.000 fois plus élevée que celle régnant à l'intérieur du Soleil, ces nucléons vont tout de même « fondre ». Le résultat sera un liquide ultradense dans lequel les quarks et les gluons se comporteront comme s'ils étaient libres. Mais dès que la température va descendre en dessous d'environ mille milliards de degrés, ce plasma de quarks-gluons, parfois appelé quagma ou encore QGP, se condensera en une myriade d'hadrons généralement instables, au sein desquels quarks et gluons seront à nouveau confinés.

    Les physiciens étudient depuis quelques décennies ce quagma dont ils ont démontré l'existence, notamment dans des expériences menées au Cern avec le LHC. Ils peuvent de cette façon remonter à une période de l'histoire de l'Univers observable où celui-ci était âgé de moins d'un millionième de seconde. Cette phase de la matière n'a pas encore livré tous ses secrets et elle devrait permettre de remonter plus loin dans le passé du Cosmos. On compte justement sur l'étude des étoiles à neutrons pour cela.

    Cette simulation montre la densité de la matière ordinaire (principalement des neutrons) en rouge-jaune. Peu de temps après la fusion des deux étoiles, le centre extrêmement dense devient vert, représentant la formation du plasma quark-gluon. © Lukas R. Weih & Luciano Rezzolla (2019)

    Aujourd'hui, un groupe de physiciens de l'université Goethe de Francfort et du Frankfurt Institute for Advanced Studies vient de publier un article dans Physical Review Letters, que l'on peut consulter sur arXiv, dans lequel ils annoncent avoir obtenu un résultat intéressant concernant justement le quagma et les étoiles à neutrons en utilisant des superordinateurs.

    En effet, les chercheurs ont simulé non seulement la fusion d'étoiles à neutrons et le produit de la fusion pour explorer les conditions dans lesquelles une transition de phase des hadrons pouvait mener à un plasma de quarks-gluons, mais aussi comment ce phénomène pourrait affecter l'émission d'ondes gravitationnelles, accompagnant la fusion des deux astres compacts au point d'y laisser une signature.

    Les résultats obtenus ont été présentés en ces termes par l'un des auteurs de l'article, le professeur Luciano Rezzolla de l'université Goethe : « Par rapport aux simulations précédentes, nous avons découvert une nouvelle signature dans les ondes gravitationnelles qui est nettement plus claire à détecter. Si cette signature se produit dans les ondes gravitationnelles que nous recevrons des futures fusions d'étoiles à neutrons, nous aurons une preuve claire de la création du plasma de quarks-gluons dans l'Univers actuel ».

    Source: https://www.futura-sciences.com/sciences/actualites/ondes-gravitationnelles-ondes-gravitationnelles-pourraient-reveler-presence-quagma-etoiles-neutrons-80870/?fbclid=IwAR24FePLMmdh3fCscUkKOA2QQb9kV8sKVTO4bYZRlZJi2DW7KjE7rcl_usY#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

  • LE 25.04.2020: Actualité de l'astronomie / Une onde gravitationnelle issue de la fusion de deux trous noirs très différents.

    Une onde gravitationnelle issue de la fusion de deux trous noirs très différents

     

    Par Azar Khalatbari le 24.04.2020 à 11h58

    Fusion de deux trous noirs de masse très différente

    CREDIT: N. FISCHER, H. PFEIFFER, A. BUONANNO (MAX PLANCK INSTITUTE FOR GRAVITATIONAL PHYSICS), SIMULATING EXTREME SPACETIMES (SXS) COLLABORATION

     

    Les deux observatoires d'ondes gravitationnelles LIGO et VIRGO ont surpris la fusion de deux trous noirs, l'un presque quatre fois plus massif que l'autre. Une première qui permet d'enregistrer un subtil effet prédit par Einstein.
     


     

    C'était il y a tout juste un an, le 12 avril 2019. Les antennes des trois observatoires d'ondes gravitationnelles –les deux interféromètres américains de LIGO et l'européen Virgo– avaient senti passer l'infime frémissement d'une onde gravitationnelle. Certes la première détection, en septembre 2015 d'une onde gravitationnelle, issue de la fusion de deux trous noirs, a été suivie de quelques dizaines d'évènements de ce type, mais jusque-là les astres à l'origine de ces ondes avaient sensiblement la même masse.  Or, aujourd'hui, les spécialistes tiennent enfin un cas inédit : GW190412, c'est-à-dire l'onde gravitationnelle du 12 avril 2019 est issue de la fusion de deux astres de masse inégale, l'un ayant 30 masses solaires, l'autre 8 seulement. Ainsi, l'un des trous noirs était 3 à 4 fois plus massif que l'autre, et cela permet de déceler pour la première fois, certains détails de l'oscillation.

    Messagers de trous noirs
    A peine deux semaines après le début de la reprise des enregistrements avec des performances augmentées des antennes, ce 12 avril 2019, les bras plurikilométriques des trois interféromètres ont vibré, signalant le passage d'un de ces frémissements de l'espace-temps qu'Albert Einstein avait prédit théoriquement il y a plus d'un siècle. Depuis 2015, les physiciens commencent à être habitués à ces signaux messagers de la fusion de deux trous noirs lointains, souvent des astres de masses équivalentes. Un évènement semblait sortir du lot, cependant : le 17 août 2017, les antennes ont enregistré la fusion de deux étoiles à neutrons, surprenant en même temps un signal électromagnétique dans plusieurs longueurs d'onde qui lui était associées. L'étude de ce seul évènement a permis de comprendre, entre autres, la formation des éléments chimiques lourds comme l'or, le platine.

    Cas remarquable
    L'évènement du 12 avril est un autre cas remarquable : avec une telle différence de masse, un effet subtil devrait apparaître dans la forme d'onde, qui avait été prédit en son temps par Einstein : les vibrations de petites longueurs d'onde se trouvent amplifiées, ou encore les hautes fréquences du signal se trouvent amplifiées. Cet effet, désigné par "l'amplification des harmoniques d'ordre élevé " dans le jargon des physiciens, permet de connaître comment les deux astres sont orientés l'un par rapport à l'autre, et déterminer à quelle distance se situe ce système binaire, en l'occurrence 2,3 milliards d'années-lumière.

    En attendant que d'autres signaux issus d'astres très différents tombent dans le filet des observatoires terrestres, les physiciens ont élaboré une simulation numérique qui reconstitue l'histoire de GW190412.  

    Source: sciencesetavenir.fr
    Source: https://www.sciencesetavenir.fr/espace/astrophysique/quand-fusionnent-deux-trous-noirs-tres-differents_143743