Actualité Météorologie, Astronomie
-
Astronomie en générale/ Catégories d'étoiles
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 0 commentaire
Caractéristiques des étoiles
Catégorie : étoiles
L'homme a imaginé que les étoiles les plus brillantes pouvaient constituer des figures. Ces regroupements diffèrent d'une époque à une autre et d'une civilisation à une autre. Les figures devenues traditionnelles, souvent en rapport avec la mythologie grecque, sont appelées constellations.
Les étoiles d'une constellation n'ont rien en commun, si ce n'est d'occuper, vues de la Terre, une position voisine dans le ciel. Elle peuvent être très éloignées les unes des autres.
Toutefois, l'Union astronomique internationale a défini une liste normalisée des constellations, attribuant à chacune une région du ciel, afin de faciliter la localisation des objets célestes. Les étoiles ont une masse comprise entre environ 0,08 et 150 fois la masse du Soleil. Cette grandeur détermine la vie de l'étoile. En 2010, une équipe d’astronomes dirigée par Paul Crowther, Professeur d’astrophysique à l’Université de Sheffield, a découvert l’étoile la plus massive avec une masse supérieure à 300 fois la masse de notre Soleil, soit deux fois les 150 masses solaires considérées comme la masse maximale pour une étoile. L’étoile R136a1, trouvée dans l’amas R136, est l’étoile observée la plus massive avec une masse d’environ 265 masses solaires et une masse calculée à la naissance de 320 fois la masse du Soleil. Une étoile très massive sera très lumineuse mais sa durée de vie sera réduite. Les étoiles très massives produisent des vents très puissants.
"Étant âgée d’un peu plus d’un million d’années, l’étoile la plus extrême, R136a1, est déjà à la moitié de sa vie et a déjà subi un intense régime amaigrissant, perdant un cinquième de sa masse initiale pendant cette période, ce qui correspond à plus de cinquante masses solaires." dit Paul Crowther.
En deçà de la masse minimale, l'échauffement générée par la contraction est insuffisant pour démarrer le cycle de réactions nucléaires. Au-delà de la masse maximale, la force de gravité est insuffisante pour retenir toute la matière de l'étoile une fois les réactions nucléaires entamées. Comparativement à notre planète (environ 12 756 km de diamètre), les étoiles sont gigantesques : le Soleil a un diamètre d'environ 1,5 million de km et certaines étoiles comme Antarès ou Bételgeuse ont un diamètre 800 fois supérieur à notre Soleil. La recherche stellaire quant à elle utilise plutôt la grandeur du rayon plutôt que le diamètre qui reste une notion à deux dimensions.
La magnitude est une échelle logarithmique du flux radiatif de l'étoile. La magnitude est une échelle logarithmique du flux radiatif de l'étoile.On distingue la magnitude apparente qui dépend de la distance entre l'étoile et l'observateur, et la magnitude absolue, qui est la magnitude de l'étoile si celle-ci était arbitrairement placée à 10 parsec de l'observateur. La magnitude absolue est bien sûr directement liée à la luminosité de l'étoile. Cette dernière grandeur est utilisée par les modèles d'évolution stellaires, tandis que la magnitude apparente est plutôt utilisée pour les observations, puisque l'œil possède une sensibilité également logarithmique. La plupart des étoiles paraissent blanches à l'œil nu. Mais si nous regardons attentivement les étoiles, nous pouvons y remarquer une couleur : bleu, blanc, rouge et même doré. Le fait que les étoiles montrent différentes couleurs resta longtemps un mystère. La couleur permet de classifier les étoiles suivant leur type spectral (qui est en rapport avec la température de l’étoile). Les types spectraux vont du plus violet au plus rouge, c'est-à-dire du plus chaud vers le plus froid et sont classés par les lettres O B A F G K M .
Le Soleil, par exemple, est de type spectral G. Mais il ne suffit pas de caractériser une étoile par sa couleur (son type spectral), il faut aussi mesurer sa luminosité. Pour un type spectral donné, plus l'étoile est grande, plus sa luminosité est forte. Les étoiles O et B sont bleues à l'œil, les étoiles A sont blanches, les étoiles F et G sont jaunes, les étoiles K sont orange, les étoiles M sont rouges.class Description temperature O super massive star ≥ 30000 K W Wolf-Rayet star ≥ 25000 K B massive star 10000 - 30000 K A large star 7300 - 10000 K F solar type 6000 - 7300 K G solar type 5300 - 6000 K K solar type 3800 - 5300 K M sub solar 2500 - 3800 K C carbon star 2400 - 3200 K S sub carbon star 2400 - 3500 K L hot brown dwarf 1300 - 2400 K T cool brown dwarf 600 - 1300 K Y sub brown dwarf < 600 K Tableau : Classification par type spectral.
Image : Image de l’amas globulaire d’Omega du Centaure, prise par le télescope spatial Hubble avec la Wide Field Camera 3 (WFC3), en 2009. crédit : NASA, ESA, and the Hubble SM4 ERO Team.
La couleur permet de classifier les étoiles suivant leur type spectral (qui est en rapport avec la température de l’étoile). Les types spectraux vont du plus violet au plus rouge, c'est-à-dire du plus chaud vers le plus froid et sont classés par les lettres O B A F G K M .
Les étoiles O et B sont bleues à l'œil, les étoiles A sont blanches, les étoiles F et G sont jaunes, les étoiles K sont orange, les étoiles M sont rouges.Catégorie d'étoiles : naine
nota : Les naines brunes ne sont pas des étoiles ou plutôt ce sont des étoiles ratées. Leur masse se situe entre celles des petites étoiles et celle des grosses planètes. En effet, au dessus de 8% de la masse solaire, une protoétoile amorce des réactions thermonucléaires et brille. Les naines brunes ne sont pas suffisamment massives mais elles rayonnent un peu de chaleur, résidu de sa formation. Il est possible qu'au début de leur formation elles aient démarré une fusion thermonucléaire mais elles se sont éteintes. Les naines brunes n'ont jamais atteint la masse critique (13 fois la masse de Jupiter ou 0,08 fois la masse du Soleil) pour s'enflammer et maintenir un état durable. Les naines brunes sont difficilement observables, puisqu'elles n'émettent qu'un faible rayonnement dans l'infrarouge.
Naines brunes : Teide 1, WISE 0855–0714nota : Les naines rouges sont de petites étoiles (0,08 et 0,4 masse solaire) rouges et discrètes dont la température en surface est peu élevée (entre 2 500 et 5 000 K), ce qui explique qu'elles brillent dans le rouge ou l'orange. Ces étoiles parmi les plus nombreuses de l'Univers, ne consomment que très peu de carburant nucléaire (hydrogène) et possèdent donc une durée de vie très longue, estimée entre quelques dizaines et 1 000 milliards d'années.
Elles se contractent et s'échauffent lentement jusqu'à ce que tout leur hydrogène soit consommé. Proxima du Centaure ou Alpha Centauri C, l'étoile la plus proche de nous est une naine rouge, de même qu'une vingtaine d'autres parmi les trente étoiles les plus proches du système solaire.
Naines rouges : Proxima Centauri, Regulus Cnota : Les naines blanches sont des résidus d'étoiles éteintes. C’est l’avant-dernière phase de l'évolution des étoiles dont la masse est comprise entre 0,3 et 1,4 fois celle du Soleil. La densité d'une naine blanche est très élevée. Une naine blanche de 1 masse solaire a un rayon de l'ordre de celui de la Terre. Le diamètre de la naine blanche ne dépend pas de sa température, mais de sa masse, plus sa masse est élevée, plus son diamètre est faible. Toutefois, il existe une valeur au-dessus de laquelle une naine blanche ne peut exister, c’est la limite de Chandrasekhar. Au-delà de cette masse, la pression due aux électrons est insuffisante pour compenser la gravité et l'étoile continue sa contraction, jusqu'à devenir une étoile à neutrons.
Naines blanches : Sirius B, 40 Eridani BCatégorie d'étoiles : naine
nota : Les naines jaunes sont des étoiles de taille moyenne, mais les astronomes ne classent les étoiles qu'en naines ou en géantes. Elles ont une température de surface d'environ 6 000 K et brillent d'un jaune vif, presque blanc. À la fin de sa vie, une naine jaune devient une géante rouge puis une naine blanche. Une étoile atteint ce stade lorsque son cœur a épuisé son principal carburant, l'hydrogène. Des réactions de fusion de l'hélium se déclenchent alors, et tandis que le centre de l'étoile se contracte, ses couches externes gonflent, refroidissent et rougissent. Transformé en carbone et en oxygène, l'hélium s'épuise à son tour et l'étoile meurt. L'astre se débarrasse alors de ses couches externes et son centre se contracte pour devenir une naine blanche de la taille d'une planète.
Naines jaunes : Soleil, α Centauri Anota : Les naines orange sont des étoiles de la séquence principale, de type K V, K (type spectral), V (classe de luminosité). Elles se situent entre les naines jaunes comme le Soleil et les naines rouges comme Proxima du Centaure. Elles ont des masses de l'ordre de 0,5 à 0,8 fois celle du Soleil (entre 500 et 800 masses de Jupiter) et des températures de surface comprises entre 3 500 et 5 000 K.
Naines oranges : Alpha Centauri B, Epsilon Eridani, Eta Cassiopeiae, Sigma Draconis, 61 CygniCatégorie d'étoiles : géante
Les géantes blanches, bleues et super géantes jaunes, rouges sont très chaudes et brillantes.
Ces étoiles sont au moins dix fois plus grosses que le Soleil. Les géantes bleues sont extrêmement lumineuses, de magnitude absolue -5, -6 et plus.
Très massives, elles consomment rapidement leur hydrogène et leur durée de vie est très courte de l'ordre de 10 à 100 millions d'années, elles sont donc très rares dans l'Univers observable. Lorsque l'hydrogène dans son cœur a été consumé, la géante bleue fusionne alors l'hélium puis produisent de l'oxygène. Ses couches externes enflent et sa température de surface baisse jusqu'à devenir une super géante rouge.
L'étoile fabrique ensuite des éléments de plus en plus lourds : fer, nickel, chrome, cobalt, titane...
C'est dans les étoiles que la matière dont nous sommes fait est créée.
À ce stade, les réactions de fusion s'arrêtent et l'étoile devient instable. Puis elle explose en une supernova et meurt en ensemençant l'espace interstellaire d'atome complexe.L'explosion laisse derrière elle un étrange cœur de matière qui demeurera intact. Ce cadavre est, selon sa masse, une étoile à neutrons ou un trou noir.
Géantes bleues : Rigel, Deneb, Hadar,
Géantes rouges : Aldébaran,
Géantes blanches : Procyon,
Géantes jaunes : Pollux,
Supergéantes jaunes : Canopus,
Supergéantes bleues : Achernar,
Supergéantes rouges : Bételgeuse, Antarès,Catégorie d'étoiles : étoile à neutrons et trou noir
Les étoiles à neutrons sont très petites mais très denses. Elles concentrent la masse d'une étoile comme le Soleil dans un rayon d'environ 10 km. Ce sont les vestiges d'étoiles très massives de plus de dix masses solaires.
Lorsqu'une étoile massive arrive en fin d'existence, elle s'effondre sur elle-même, en produisant une impressionnante explosion appelée supernova. Cette explosion disperse d'énormes quantités de matière dans l'espace mais épargne le cœur de l'étoile. Ce cœur se contracte et se transforme en grande partie en une étoile à neutrons. La densité d'une étoile à neutrons est à peu près celle du noyau atomique.
Ces objets, appelés magnétars, possèdent des champs magnétiques très intenses. Le long de l'axe magnétique se propage des particules chargées, électrons par exemple, qui produisent un rayonnement synchrotron. Ce champs est tellement puissant qu'il déforme jusqu'aux atomes constituant la matière.
En l'absence de champs magnétiques, les atomes ont une forme sphérique, alors que soumis à des champs magnétiques super puissants, ils prennent une forme effilée et s'alignent d'eux-mêmes suivant des lignes de champ magnétique, comme autant de petites aiguilles placées bout à bout.
Les trous noirs sont des objets massifs dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper.Les trous noirs sont décrits par la théorie générale de la relativité. Lorsque le cœur de l'étoile morte est trop massif pour devenir une étoile à neutrons, il se contracte inexorablement jusqu'à former cet objet astronomique qu'est le trou noir.
Envisagée dès le 18ème siècle, la théorie soutenant l'existence des trous noirs, stipule qu'il s'agit d'objets si denses que leur vitesse de libération est supérieure à la vitesse de la lumière – c'est-à-dire que même la lumière ne peut vaincre leur force gravitationnelle de surface, et reste donc prisonnière.
De cette caractéristique inquiétante proviennent les qualificatifs « noir » et « obscur, » mais le terme le plus exact serait surement « invisible, » car il s'agit bien là d'une absence totale de luminosité. La théorie définit également avec précision l'intensité du champ gravitationnel d'un trou noir.
Elle est telle qu'aucune particule franchissant son horizon, frontière théorique, ne peut s'en échapper. Si la plupart des étoiles se placent facilement dans l'une ou l'autre de ces catégories, il ne s'agit que de phases temporaires.
Au cours de son existence, une étoile change de forme et de couleur, et peut passer d'une catégorie à une autre.Image : V. Beckmann (NASA's GSFC) et al., ESA.
-
Astronomie en générale/ Les amas d’étoiles
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 1 commentaire
Les amas d’étoiles
Un amas d’étoiles est un regroupement d’étoiles visible dans le ciel. Dès le premier regard, on distingue deux types d’amas :
- les amas ouverts, contenant un petit nombre d’étoiles -de quelques dizaines à quelques milliers- assez régulièrement espacées. Les amas ouverts ne présentent pas de structure apparente, et leur couleur générale est bleue.
- les amas globulaires, qui rassemblent un très grand nombre d’étoiles -de quelques dizaines de milliers à quelques millions- et qui montrent une forme sphérique évidente. Comme leur nom l’indique, ils présentent un aspect globuleux, avec une concentration d’étoiles si forte vers le centre que leurs images se confondent. Leur couleur générale est rouge.
Cette différence visuelle n’est pas la seule, loin de là. Tout d’abord, leur localisation est différente :
- Les amas ouverts se trouvent dans le disque de la Galaxie, mélangés aux étoiles ;
- Les amas globulaires sont situés dans un immense halo sphérique, qui entoure le disque de la Galaxie.
-
Astronomie en générale/ Notre Voie Lactée en détailles
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 0 commentaire
LES PREMIERES ETUDES DE LA VOIE LACTEE
La partie la plus fascinante du ciel nocturne est une bande blanchâtre et diffuse qui traverse la voûte céleste : la Voie Lactée. En utilisant sa lunette au XVIIe siècle, Galilée fut le premier astronome à comprendre que cette dernière est en fait constituée d’une myriade d’étoiles qui se concentrent dans une région du ciel en forme de bande. La concentration est telle que l’oeil humain ne peut plus discerner les étoiles les unes des autres et ne voit qu’une bande diffuse.
Un spectacle fabuleux dans la voûte céleste : la Voie Lactée. Crédit : W.-H. Wang
La forme de la Voie Lactée et le fait qu’elle semble encercler la Terre suggérèrent aux astronomes, en particulier à l’Anglais Thomas Wright au milieu du XVIIe siècle, que le Soleil et les autres étoiles devaient former un système très aplati. Au XVIIIe siècle, le philosophe allemand Emmanuel Kant avança l’idée que la Voie Lactée était un système d’étoiles en forme de disque. En regardant dans la direction du disque, on apercevait un immense nombre d’étoiles qui se confondaient pour donner une impression de bande diffuse. Dans la direction perpendiculaire, par contre, on ne voyait que quelques étoiles proches et rien au-delà, ce qui donnait cette impression relative de vide.
Les premières analyses de la Voie Lactée
Les premières tentatives pour aller plus loin furent couronnées d’un succès limité. Dans les années 1780, William Herschel, le découvreur d’Uranus, se lança dans la première analyse quantitative de la structure de la Voie Lactée. Il divisa la voûte céleste en une multitude de régions et compta le nombre d’étoiles visibles dans chacune de ces régions. Ceci devait lui permettre de reconstituer la forme de la Voie Lactée dans l’espace et de déterminer la position du Soleil par rapport à l’ensemble.
Les observations d’Herschel semblèrent montrer que la distribution du nombre d’étoiles dans la Voie Lactée était plus ou moins uniforme et il en conclut que le Soleil se trouvait au centre du disque. Plus tard, au début du XXe siècle, le Néerlandais Jacobus Kapteyn, réalisa une analyse plus poussée et arriva au même résultat. Il s’essaya même à déterminer la taille de la Voie Lactée, qu’il estima à 40.000 années-lumière.
William Herschel : Hannover, 1738 – Slough, 1822
La Voie Lactée cachée par le milieu interstellaire
Nous savons aujourd’hui que les deux astronomes se trompèrent dans leurs conclusions car ils ne tinrent pas compte de l’effet du milieu interstellaire. Or, celui-ci diffuse la lumière des étoiles. Ainsi, à partir d’une certaine distance, le rayonnement d’une étoile est tellement affaibli que nous ne pouvons plus le détecter. En conséquence, nous ne pouvons observer qu’une petite fraction des étoiles de la Voie Lactée, celles qui sont suffisamment proches. Peu importe la position du Soleil, au centre ou pas, Herschel et Kapteyn allaient trouver une distribution uniforme d’étoiles car ils ne pouvaient observer que le voisinage du Soleil.
Heureusement pour notre connaissance de l’Univers, le milieu interstellaire n’obscurcit pas la lumière toutes les directions. Le gaz et les poussières interstellaires se trouvent concentrés dans le plan de la Voie Lactée comme les étoiles. L’extinction interstellaire est très faible dans les autres directions, ce qui nous permet malgré tout d’observer des objets plus lointains. C’est grâce à cela que les astronomes purent finalement déterminer la forme réelle et la taille de la Voie Lactée, ainsi que la place du Soleil dans l’ensemble.
-
Astronomie en générale/ L’espace-temps autour d’un trou noir
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 1 commentaire
L’espace-temps autour d’un trou noir
-
Astronomie en générale/ Le Soleil
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 0 commentaire
-
Astronomie en générale/ Pourquoi la planète Mars est-elle rouge ?
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 1 commentaire
Dans le ciel, la planète Mars apparaît comme un astre rouge. Une couleur qu'elle doit à son sol composé essentiellement d'oxyde de fer.
Interview : pourquoi la Nasa n'envoie-t-elle personne sur Mars ? La prochaine étape de la conquête spatiale est indubitablement Mars. Néanmoins, le voyage est constamment repoussé depuis plusieurs années par la Nasa. Futura-Sciences a interviewé Charles Frankel, planétologue, afin qu’il nous explique pour quelles raisons.
Mars est l'une des cinq planètes visibles à l’œil nu. Ainsi, dans l'Antiquité déjà, les Romains avaient constaté dans le ciel la couleur rouge si particulière de la quatrième planète du Système solaire. Traduisant sa couleur comme le résultat du sang versé sur d'immenses champs de bataille, ils ont choisi de lui donner le nom de leur dieu de la guerre.
Une planète rouge comme la rouille
Aujourd'hui, nous savons qu'aucune guerre sanglante n'a eu lieu sur le sol de la Planète rouge. Si Mars nous apparaît ainsi teintée, c'est que son sol est assez largement composé d'oxyde de fer. De la rouille, en quelque sorte.
En effet, il y a plus de 3 milliards d'années, alors qu'elle n'était pas rouge du tout, la planète aurait rencontré un évènement solaire lui ayant littéralement soufflé son atmosphère. Particulièrement ténue, celle-ci aurait alors lentement oxydé un sol martien riche en fer.
Mars est plus rougeâtre que rouge
En réalité, la planète Mars n'a pas une couleur rouge sang, comme l'avait imaginé nos lointains ancêtres, mais plutôt rougeâtre, avec des nuances de brun et d'orange.
Une couleur qui est tantôt accentuée par les tempêtes qui secouent la planète, soulevant des nuages de sables rougeâtres, tantôt atténuée lorsque les conditions météorologiques sont calmes.
-
Astronomie en générale/ Comment reconnaître une météorite ?
- Par
- Le 29/11/2020
- Dans Astronomie en générale
- 0 commentaire
Vous pensez qu'une météorite est tombée dans votre jardin ou dans un champ près de chez vous ? qu'une pierre trouvée sur votre chemin vient de l'espace ? Voici quelques astuces qui vous permettront d'identifier une météorite.
Selon les estimations, environ 4.400 météorites de plus d'un kilogramme atteignent le sol terrestre chaque année. Une grande partie d'entre elles ont coulé au fond des océans, lesquels représentent plus de 70 % de la surface terrestre. Néanmoins, cela ne suffit pas à décourager les chasseurs de ces fragments d'astéroïdes, morceaux de Lune - et même de Mars pour les plus rares - échoués sur notre planète.
Pour maximiser les chances de découvrir ces pépites, le plus simple est de sillonner des surfaces relativement uniformes, couvertes, par exemple, de neige ou de sable. Il s'agit notamment des déserts chauds ou glacés comme les vastes étendues blanches de l'Antarctique. En effet, dans ces milieux peu peuplés, les seules pierres que l'on puisse cueillir sur le sol sont celles qui sont tombées du ciel.
Enfin, si en vous promenant, une pierre sur votre chemin aiguise votre curiosité ou encore si vous êtes témoin d'un évènement météoritique et que vous vous lancez à la recherche d'un fragment qui aurait touché le sol, voici quelques indications qui vous permettront d'éliminer les fausses pistes.