Créer un site internet

Articles de dimitri1977

  • Actualité de l'astronomie du 02.03.2021 / 25.000 trous noirs supermassifs révélés sur une carte d'une partie du ciel !

    25.000 trous noirs supermassifs révélés sur une carte d'une partie du ciel !

     

    Laurent Sacco

    Journaliste

    Peut être une image de ciel et texte

    Publié le 01/03/2021

    Modifié le 02/03/2021

     [EN VIDÉO] Que se passerait-il si vous tombiez dans un trou noir ?  Les profondeurs des trous noirs sont des espaces de mystère et de fantasme, mais cela ne signifie pas que nous ne pouvons pas les approcher de manière scientifique. Voyageons donc ensemble aux frontières de la réalité telle que nous la connaissons. 

    Tout comme les exoplanètes, les trous noirs deviennent des objets d'observation courants pour les astronomes en cette fin du premier quart du XXIe siècle. On peut s'en convaincre avec le début de la réalisation d'une carte montrant déjà 25.000 trous noirs supermassifs sur une portion de la voûte céleste. Elle provient d'images réalisées à partir d'observations à basse fréquence du radiotélescope géant Lofar (LOw Frequency ARray).

    Le contraste est saisissant... En 1939, Einstein publie un article dans la revue Annals of Mathematics portant le titre « On a Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses ». Pour lui, c'est l'acte de décès de l'existence des trous noirs. Pour nous, en 2021, ils sont partout, dans les galaxies, dans les amas globulaires et probablement aussi dans l'infiniment petit sous forme de trous noirs virtuels existant transitoirement dans l’écume de l’espace-temps. Nous observons les ondes gravitationnelles qu'ils émettent lors de collision et nous imageons même directement ce qui définit un trou noir, la présence d'un horizon des événements entourant une région finie de l'espace.

    Jusqu'à la fin des années 1950, la majorité des physiciens et des astronomes pensent qu'Einstein a raison mais sans en avoir la preuve. Et pourtant, seulement quelques mois après la publication de l'article d'Einstein, et sans le dire explicitement, Robert Oppenheimer pulvérise l'argumentation d'Einstein dans un article, « On Continued Gravitational Contraction », écrit en collaboration avec un de ses étudiants de l'époque, Hartland Snyder. Il complétait un autre article publié en début d'année avec Georges Volkoff, « On Massive Neutron Cores », les deux publications posant le socle sur lequel les théories des étoiles à neutrons et celle de leur effondrement gravitationnel conduisant à la formation d'un trou noir seront construites au début des années 1960.

    À ce moment-là, les progrès de l'astrophysique nucléaire et le renouveau de la relativité générale, entraîné par la découverte des quasars et du rayonnement fossile, vont précipiter l'entrée dans le domaine de l'astrophysique relativiste. Et le problème de la détermination de l'état final de la matière dans le cas d'une étoile en fin de vie ayant épuisé son carburant nucléaire se posera alors avec plus d'acuité et d'urgence. Mélangeant relativité générale, thermodynamique et physique nucléaire, le plus important ouvrage traitant de ces questions à la fin des années 1960 est probablement celui de Harrison, Thorne, Wakano, et Wheeler : « Gravitation Theory and Gravitational Collapse », publié en 1965. La même année, le prix Nobel de physique Roger Penrose allait publier son théorème sur les singularités, plantant le dernier clou dans le cercueil des idées développées par Einstein dans son article de 1939.

    Une présentation de Lofar. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © WebsEdgeEducation

    Lofar et les trous noirs supermassifs

    Nous l'avons dit, pour la noosphère du XXIe siècle, les trous noirs sont partout en astronomie et ils peuvent être supermassifs, contenant des millions ou des milliards de masses solaires. Accrétant de la matière ils émettent indirectement des rayonnements que l'on peut détecter sur Terre dans le domaine des ondes électromagnétiques. Une équipe internationale d'astronomes annonce aujourd'hui qu'elle a même réussi à dresser une carte inédite sur la voûte céleste montrant 25.000 trous noirs supermassifs au cœur des galaxies. Comme l'explique l'article en accès libre sur arXiv, cet exploit a été rendu possible par la mise en service d'un des plus grands radiotélescopes jamais construit, en réalité un réseau de milliers de petits radiotélescopes baptisé Lofar (Low Frequency Array).

    Ce radiotélescope est exploité par l'Institut néerlandais de radioastronomie (Astron) qui coordonne des prises de données par des instruments répartis en Europe. La partie française de Lofar étant, sans surprise, installée à Nançay, dans le Cher, au sein de la célèbre et ancienne station de radioastronomie de l'Observatoire de Paris (Observatoire de Paris - PSL/CNRS/Université d'Orléans). Astron utilise donc une technique de synthèse d'ouverture par interférométrie qui, dans le cas présent, permet de combiner les signaux des différentes antennes pour créer un radiotélescope géant virtuel, dont la taille peut atteindre l'équivalent de 15.000 terrains de football.

    Cette carte du ciel montre 25.000 trous noirs supermassifs. Chaque point blanc est un trou noir supermassif dans sa propre galaxie. © Lofar, LOL Survey

    Cette carte du ciel montre 25.000 trous noirs supermassifs. Chaque point blanc est un trou noir supermassif dans sa propre galaxie. © Lofar, LOL Survey 

    Un communiqué de l'université de Leyde, la plus ancienne des universités néerlandaises, explique que la carte aujourd'hui publiée ne couvre pour le moment que 4 % de la voûte céleste que l'on peut contempler quand on se trouve dans l'hémisphère Nord. Il a fallu combiner les contributions de 52 stations Lofar totalisant 256 heures d'observation pour dresser cette carte qui a pour vocation de rendre compte à terme de tout le ciel nordique.

    Le volume de données acquises a nécessité pour être traité d'avoir recours à des superordinateurs et tout comme dans le cas de bien des observations faites sur Terre, il a fallu utiliser des algorithmes de traitement du signal pour tenir compte des perturbations causées par l'atmosphère de notre Planète bleue, plus précisément dans le cas présent celles de son ionosphère.

    Il s'agit d'un problème analogue à celui que l'on résout partiellement avec l'optique adaptative et qui dégrade, en raison de la turbulence de la troposphère notamment, les images prises par les télescopes car ne leur permettant pas d'atteindre leur résolution théorique issue de la théorie de la diffraction.

    Dans le cas des ondes radio étudiées avec Lofar, le chercheur qui a dirigé les travaux menant à la carte des trous noirs supermassifs, Francesco de Gasperin, explique que la réussite de leur analyse : « est le résultat de nombreuses années de travail sur des données incroyablement difficiles à traiter. Nous avons dû inventer de nouvelles méthodes pour convertir les signaux radio en images du ciel ». Son collègue, Reinout van Weeren, donne une image simple du casse-tête qu'il a fallu résoudre pour tenir compte de l'ionosphère et de ses particules chargées qui se comporte comme une lentille trouble dont la réfringence serait fluctuante aussi bien dans le temps que dans l'espace : « c'est comme lorsque vous essayez de voir le monde tout en étant immergé dans une piscine. Lorsque vous levez les yeux, les vagues sur l'eau de la piscine dévient les rayons lumineux et déforment la vision ».

    En bonus, la carte des trous noirs supermassifs est aussi une nouvelle carte des structures géantes rassemblant des galaxies et dont les cosmologistes essayent de comprendre l'origine et de les décoder.

    Le champ large montré ci-dessus se trouve autour du quasar 3C196 (tache brillante au centre) et c'est une portion du ciel équivalente à 1.000 fois la Pleine Lune. On voit clairement d'autres objets astrophysiques autour de 3C196. © Insu-Multi-national Lofar commissioning teams led by Olaf Wucknitz (Argelander Institut für Astronomie, University of Bonn, Germany) and Reinout van Weeren (Leiden Observatory, University of Leiden)

    Le champ large montré ci-dessus se trouve autour du quasar 3C196 (tache brillante au centre) et c'est une portion du ciel équivalente à 1.000 fois la Pleine Lune. On voit clairement d'autres objets astrophysiques autour de 3C196. © Insu-Multi-national Lofar commissioning teams led by Olaf Wucknitz (Argelander Institut für Astronomie, University of Bonn, Germany) and Reinout van Weeren (Leiden Observatory, University of Leiden)  

    À gauche : l'image radio prise avec les seules antennes du cœur de Lofar aux Pays-Bas. La résolution est de 11 secondes d’arc, représentée par le grand cercle vert. Le plus petit détail discernable mesurant 265.000 années-lumière de diamètre, 3C196 apparaît comme une source étendue sans sous-structures. L'image de droite a été obtenue avec l'appoint des stations Lofar en Europe. Elle couvre le même champ que celle de gauche mais, cette fois, la résolution est de 0,3 seconde d’arc, représentée par le tout petit cercle vert en haut à droite du cliché. Le plus petit détail mesurable est de 7.200 années-lumière, ce qui permet d'observer les deux extrémités du jet issu du trou noir supermassif au centre du quasar. © Insu-Multi-national Lofar commissioning teams led by Olaf Wucknitz (Argelander Institut für Astronomie, University of Bonn, Germany) and Reinout van Weeren (Leiden Observatory, University of Leiden)

    À gauche : l'image radio prise avec les seules antennes du cœur de Lofar aux Pays-Bas. La résolution est de 11 secondes d’arc, représentée par le grand cercle vert. Le plus petit détail discernable mesurant 265.000 années-lumière de diamètre, 3C196 apparaît comme une source étendue sans sous-structures. L'image de droite a été obtenue avec l'appoint des stations Lofar en Europe. Elle couvre le même champ que celle de gauche mais, cette fois, la résolution est de 0,3 seconde d’arc, représentée par le tout petit cercle vert en haut à droite du cliché. Le plus petit détail mesurable est de 7.200 années-lumière, ce qui permet d'observer les deux extrémités du jet issu du trou noir supermassif au centre du quasar. © Insu-Multi-national Lofar commissioning teams led by Olaf Wucknitz (Argelander Institut für Astronomie, University of Bonn, Germany) and Reinout van Weeren (Leiden Observatory, University of Leiden) 

    Source: https://www.futura-sciences.com/sciences/actualites/astronomie-25000-trous-noirs-supermassifs-reveles-carte-partie-ciel-27928/?utm_content=bufferb7987&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR3ZKN7jqFE3-Kn4ULGAJcE5LWNY_IBYboffkBQO_fJB4-7EF9U00Havyng

  • Actualité de l'astronomie du 02.03.2021 / L'armée américaine teste avec succès un panneau solaire spatial pour envoyer de l'électricité sur Terre.

    L'armée américaine teste avec succès un panneau solaire spatial pour envoyer de l'électricité sur Terre

     

    Céline Deluzarche

    Journaliste

    Peut être une image de texte qui dit ’. La transmission des signaux micro- ondes nécessite des gigantesques antennes aussi bien au départ qu'a la réception. © U.S. Νανα Research Laboratory’

    Publié le 01/03/2021

     [EN VIDÉO] L'énergie solaire pourrait-elle être la principale source d'énergie ?  En 2014, la part du solaire photovoltaïque dans le mix électrique français ne dépassait pas les 1,3 % (chiffre France Territoire Solaire). Comment alors l'énergie solaire pourrait-elle devenir notre principale source d'énergie ? Marion Perrin, docteur en électrochimie, partage avec nous son point de vue sur la question. 

    Cette vieille idée a été remise au goût du jour récemment à la faveur des progrès technologiques. Mais les défis restent nombreux avant de pouvoir profiter d'une électricité sans fil compétitive et disponible partout sur la planète.

    C'est un vieux serpent de mer, imaginé dès les années 1920 par le scientifique russe Constantin Tsiolkovsky, qui vient enfin de prendre forme en février : l'U.S. Naval Research Laboratory a testé un panneau solaire destiné à transmettre de l'énergie solaire sur Terre depuis l'espace. Ce panneau, nommé Photovoltaic Radiofrequency Antenna Module (PRAM), a été lancé en mai 2020 à bord du drone d'essai orbital X-37B de l'armée de l'air. Le module de 30 x 30 cm convertit la lumière solaire en énergie micro-ondes pour la rediriger vers la Terre, où elle est captée par des antennes qui la reconvertissent en électricité.

     

    Six à huit fois plus d’énergie qu’une centrale au sol à surface comparable

    « Dans l'espace, le spectre lumineux contient plus de bleu [qui est normalement filtré par l’atmosphère], ce qui permet d'ajouter une autre couche aux cellules solaires pour en profiter, explique Paul Jaffe, codéveloppeur du projet. C'est l'une des raisons pour lesquelles la puissance par unité de surface d'un panneau solaire dans l'espace est supérieure à celle au sol ». L'autre avantage, c'est que la quantité d'énergie lumineuse n'est pas limitée par les nuages ou l’alternance jour-nuit. Selon le chercheur, interrogé par CNN, les dernières expériences montrant que le panneau est capable de produire environ 10 watts, de quoi alimenter une tablette tactile. Mais avec des panneaux beaucoup plus grands, on peut envisager d'en produire plusieurs gigawatts et ainsi alimenter une ville entière, assure l'ingénieur.

    Le module PRAM de 30 x 30 cm est capable de produire 10 watts d’électricité. © U.S. Naval Research Laboratory

    Le module PRAM de 30 x 30 cm est capable de produire 10 watts d’électricité. © U.S. Naval Research Laboratory 

    « L'avantage unique des satellites d'énergie solaire par rapport à toute autre source d'énergie est sa transmissibilité mondiale. Vous pouvez envoyer de l'électricité à Chicago et une fraction de seconde plus tard, si besoin est, l'envoyer à Londres ou à Brasilia. » La technique pourrait aussi s'appliquer lors des catastrophes naturelles lorsque l'infrastructure électrique est hors service.

     

    Une centrale solaire de 25 fois la masse de l’ISS

    L'une des difficultés est la température de fonctionnement du PRAM. « Au fur et à mesure qu'il se réchauffe, il est de moins en moins efficace », atteste Paul Jaffe. Aujourd'hui, le drone X-37B sur lequel est embarqué le module effectue des boucles de 90 minutes en orbite basse autour de la Terre durant lesquelles il passe la moitié de son temps dans l'obscurité, donc dans le froid. Mais en phase opérationnelle, les panneaux seraient placés en orbite géosynchrone, ce qui fait qu'ils seraient exposés la plus grande partie du temps au soleil.

    Le X-37B est un drone spatial expérimental destiné à tester différentes technologies. © U.S. Naval Research Laboratory

    Le X-37B est un drone spatial expérimental destiné à tester différentes technologies. © U.S. Naval Research Laboratory 

    Une autre difficulté concerne la transmission des micro-ondes vers la Terre. Les micro-ondes sont diffractées dans l'atmosphère, ce qui signifie que plus la longueur d'onde est grande, plus les antennes émettrices et réceptrices doivent aussi être grandes. Pour une antenne en orbite d'un kilomètre de diamètre, la surface au sol de l'antenne réceptrice devrait être de 10 kilomètres, d'après les calculs du physicien Marty Hoffert, cité par Science et Vie.

    Reste enfin la question essentielle du prix, l'acheminement et le déploiement de panneaux solaires dans l'espace étant particulièrement coûteux. Or, une centrale de 5 GW pèserait environ 10.000 tonnes, soit 25 fois la masse de la Station spatiale internationale (ISS) ! Une des solutions serait d'assembler les panneaux directement dans l'espace à partir de milliers de modules envoyés par des nano-satellites, voire à les imprimer en 3D sur place.

    Des projets qui refont surface

    L'US Navy n'est pas la seule à s'intéresser aux centrales solaires spatiales. En 2015, l'agence spatiale japonaise Jaxa avait déjà réussi à transférer deux kilowatts d'électricité sous forme de micro-ondes sur une distance de 55 mètres. La Chine a également annoncé en 2019 vouloir construire une centrale solaire dans l'espace d'ici 2035. Ces projets parviendront-ils à être concurrentiels avec le solaire terrestre, dont le prix ne cesse de chuter ? Comment assurer la maintenance des panneaux solaires dans l'espace, qui risquent d'être endommagés par des micrométéorites ou les radiations ? Autant de questions qui risquent de nous faire attendre encore longtemps cette énergie à volonté.

    Source: https://www.futura-sciences.com/sciences/actualites/energie-solaire-armee-americaine-teste-succes-panneau-solaire-spatial-envoyer-electricite-terre-18948/?utm_content=buffer38b23&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR1OhI7FuO7AyJYmgwa0SxiLQEHzirVZWoGw-Gk-j-AKIKYbMBJ2fMPSNnQ

  • Actualité de l'astronomie du 24.02.2021 / La robotique d’exploration : une application uniquement spatiale ?

    La robotique d’exploration : une application uniquement spatiale ?

     

    Fanny Pégard

    Rédactrice Web

    Aucune description de photo disponible.

    Publié le 23/02/2021

    Les robots fascinent et alimentent parfois les idées fausses. Dans son troisième épisode de En vrai, EPITA vous propose de faire le point sur la robotique d'exploration, d'en comprendre les enjeux mais aussi les applications.

    Les robots ont souvent été utilisés au cinéma pour sauver le monde ou partir à la découverte de nouvelles planètes. Pourtant la réalité est bien différente de ce qui sort de l'imagination des plus grands réalisateurs.

    La robotique d'exploration décryptée dans En Vrai, par EPITA.

     

    La robotique d’exploration : un secteur en plein développement

    Le fort développement de la robotique d'exploration ouvre la possibilité à de nouvelles voies de recherches jusqu'alors jamais atteintes par les humains. Bardés de capteurs, les robots d'exploration vont pouvoir être utilisés dans différents milieux et servir à différentes applications. Robot d'exploration sous-marine, robot d'exploration terrestre, robot d'exploration aérienne, les possibilités sont immenses.

    VOIR AUSSIRetrouvez plus d'informations sur la démarche d'EPITA et la websérie « En vrai »

    Utiliser les robots pour collecter des informations

    La robotique d'exploration est un formidable outil de découverte et de recueil de données. En allant là où l'humain ne peut pas aller, le robot est le seul outil capable d'acquérir un maximum de données qui seront ensuite analysées et traitées par les hommes pour les mettre en application dans de multiples domaines (reconstruction 3D, mosaïque d'images...).

    La robotique d’exploration est déjà utilisée dans de nombreux secteurs d’activités comme la défense, l’agriculture, l’automobile mais aussi dans les services à la personne. © scharfsinn86, Adobe Stock.

    La robotique d’exploration est déjà utilisée dans de nombreux secteurs d’activités comme la défense, l’agriculture, l’automobile mais aussi dans les services à la personne. © scharfsinn86, Adobe Stock. 

    La robotique d’exploration : des usages scientifiques mais aussi quotidiens

    La robotique d'exploration est utilisée dans un premier temps dans la sphère scientifique et industrielle. Pourtant de plus en plus, la robotique d'exploration prend place dans notre vie quotidienne : voiture autonome, aide à la personne, gestion des catastrophes naturelles, robotique sociale...

    Des robots très utiles en cas de catastrophe

    On l'a dit, les robots permettent d'aller là où l'homme ne peut pas se rendre. Pourtant, pas besoin d'être dans l'espace ou au fond des océans pour trouver des exemples concrets. Récemment, l'incendie de Notre-Dame-de-Paris a fait appel aux robots d'exploration, comme les drones ou des robots terrestres afin de récolter des données et des images pour aider à la prise de décision dans le sauvetage de la cathédrale et de sa structure.

    La robotique, un secteur complexe mais passionnant

    La robotique fait appel à de nombreuses compétences et connaissances. C'est pour cela qu'EPITA offre la possibilité, grâce à sa Majeure Génie Informatique des Systèmes Temps Réel et Embarqués (GISTRE), de former des ingénieurs capables d'explorer de nouvelles voies et de repousser sans cesse les limites de la robotique d'exploration.

    Rendez-vous la semaine prochaine pour découvrir l'épisode 4 consacré à la réalité virtuelle et à la réalité augmentée.

    Article réalisé en collaboration avec le groupe IONIS.

    Source: https://www.futura-sciences.com/sciences/actualites/skillz-robotique-exploration-application-uniquement-spatiale-85903/?utm_content=buffere5bc8&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR3ARkpKvXw4fQnDtsCngDX8VlCdsfKpacxX7T5fnKJL22Hid4JVAaisfm4

  • Actualité de l'astronomie du 24.02.2021 / La destruction des étoiles par des trous noirs trahie par les neutrinos émis.

    La destruction des étoiles par des trous noirs trahie par les neutrinos émis

     

    Laurent Sacco

    Journaliste

    Aucune description de photo disponible.

    Publié le 23/02/2021

     [EN VIDÉO] Un trou noir pourrait-il entrer en collision avec la Terre ?  Un trou noir est une région de l’espace dont rien ne peut s'échapper, pas même la lumière. Il est donc naturel de se demander si ce type d’objet pourrait être une menace pour notre planète. Futura-Sciences a interviewé Jean-Pierre Luminet, astrophysicien de renom, qui nous répond ici en vidéo. 

     

    L'astronomie des neutrinos a fait de grands progrès ces dernières décennies et, après la détection des neutrinos solaires et des supernovae, elle se connecte de plus en plus aujourd'hui à l'astrophysique des trous noirs. On commence à observer les neutrinos émis par les étoiles détruites par les forces de marée des trous noirs supermassifs.

    Une large équipe internationale de chercheurs en physique des astroparticules vient de publier dans Nature Astronomy deux articles dont des versions se trouvent en accès libre sur arXiv et qui vont probablement intéresser Jean-Pierre Luminet.

    Certes, la découverte exposée n'est pas directement liée aux mystères de l'écume de l’espace-temps qu'il explore dans son dernier ouvrage mais elle concerne tout de même les travaux qu'il a menés avec Brandon Carter il y a presque 40 ans. Les deux astrophysiciens relativistes, tout deux à l'Observatoire de Paris à cette époque, ont été les pionniers de ce que l'on appelle en anglais le phénomène de Tidal disruption event (ou TDE), ce qui peut se traduire par « évènement de rupture par effet de marée ».

    Comme le montre leur publication dans le célèbre journal Nature en 1982, suivie d'une autre dans Astronomy & Astrophysics en 1983, un TDE se produit avec une étoile dont la trajectoire trop rapprochée d'un trou noir supermassif conduit ses forces de marée à comprimer l'étoile jusqu'à produire ce qu'ils ont appelé une crêpe stellaire à cause de la forme de la déformation causée par ces forces. L'étoile pouvait finir par exploser en réponse et ses débris étaient donc avalés en partie par l'astre compact.

    Une vue d'artiste d'un TDE. © Deutsches Elektronen-Synchrotron

    L'explosion étant similaire à celle d'une supernova génitrice d'une étoile à neutrons ou d'un trou noir stellaire, on pouvait s'attendre à ce qu'un copieux flux de neutrinos soit émis. On pouvait aussi s'attendre à la production de neutrinos particulièrement énergétiques car les abords d'un trou noir de Kerr en rotation ont de bonnes raisons de se comporter comme un accélérateur de particules géant. Comme un trou noir supermassif est un monstre gorgé d'énergie de masse et d'énergie de rotation, indépendamment de l'existence de TDE, on suppose depuis des décennies que ces trous noirs géants sont probablement à l'origine des rayons cosmiques à ultra-haute énergie (UHECR) que l'on détecte sur Terre.

    Rappelons que les neutrinos sont électriquement neutres, contrairement aux particules chargées tels les protons, les positrons ou les noyaux d'hélium qui sont chaotiquement déviés au point de se déplacer comme s'ils étaient ivres dans les champs magnétiques galactiques et intergalactiques, les neutrinos sont aussi très pénétrants au point de pouvoir traverser la Terre sans généralement interagir avec les autres particules de matière. Ils sont générés dans des processus à haute énergie en particulier et, en les observant, contrairement donc aux autres rayons cosmiques matériels, on peut déterminer avec assurance de quelle portion de la voûte céleste et donc de quel objet ils ont été émis.

    Cette astronomie neutrino complète donc idéalement celles faites avec les ondes électromagnétiques et gravitationnelles pour faire de l'astronomie multimessager. Plusieurs instruments pour explorer le domaine de l'astronomie des neutrinos ont ainsi été construits, notamment l'IceCube Neutrino Observatory dans les glaces de l’Antarctique.

    Olivier Drapier, chercheur au Laboratoire Leprince-Ringuet de l’École polytechnique, CNRS, nous parle des neutrinos, ces particules de matière que l'on peut utiliser pour étudier les étoiles et l'Univers. © École polytechnique

    L'Antarctique et sa glace, un détecteur géant de neutrinos cosmiques

    Comme l'expliquent donc les deux articles publiés dans Nature (le premier octobre 2019), les glaces de l'Antarctique ont été témoins de l'événement IceCube-191001A, c'est-à-dire en l'occurrence du passage d'un neutrinos porteur d'une énergie évaluée à environ 100 TeV, soit presque 10 fois supérieure à celle des collisions de protons que l'on peut réaliser sur Terre avec le LHC, le plus puissant accélérateur de particules jamais construit par la noosphère -- on pourrait convertir toute cette énergie d'une seule particule en environ 100.000 protons au repos puisque la masse d'un proton en unité d'énergie est de 1 GeV, soit 0.001 TeV.

    Dans le cadre du programme de recherche en astronomie multimessager, le Zwicky Transient Facility (ZTF), un télescope  robotique  à l'observatoire Palomar utilisé par le célèbre Caltech en Californie du Sud, a rapidement trouvé une contrepartie dans le domaine des ondes électromagnétiques. Mieux, cette contrepartie -- une galaxie située dans la constellation du Dauphin à environ 700 millions d'années-lumière de la Voie lactée et cataloguée sous la référence 2MASX J20570298 + 1412165 -- avait déjà attiré l'attention d'astrophysiciens le 9 avril 2019 puisque le ZTF y avait révélé l'occurrence d'un TDE clairement associé à la présence dans la galaxie d'un trou noir supermassif contenant probablement 30 millions de masses solaires (le trou noir de la Voie lactée n'en contient que 4 millions).

    Une présentation de IceCube chassant les neutrinos de haute énergie pour déterminer notamment leurs origines. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © IceCube Collaboration/NSF

    Nommé AT2019dsg, il avait été étudié dans plusieurs bandes du spectre électromagnétique, des ondes radios aux rayons X et, à la suite des observations de IceCube, l'équipe dirigée par le physicien Robert Stein du laboratoire DESY (Deutsches Elektronen-Synchrotron, synchrotron allemand à électrons) en est donc arrivée la conclusion exprimée par le chercheur en ces termes : « Il s'agit du premier neutrino lié à un TDE. Ces événements ne sont pas bien compris. La détection du neutrino indique l'existence d'un moteur central et puissant à proximité du disque d'accrétion, crachant des particules rapides. Et l'analyse combinée des données des télescopes radio, optique et ultraviolet nous donne une preuve supplémentaire que le TDE agit comme un gigantesque accélérateur de particules ».

    Plus de 30 TDE ont été observés au total ces dernières années et, selon le célèbre Francis Halzen, professeur à l'Université du Wisconsin-Madison et chercheur principal d'IceCube, mais qui n'a pas été directement impliqué dans cette découverte récente : « Nous ne voyons peut-être que la pointe émergée d'un iceberg. À l'avenir, nous nous attendons à trouver de nombreuses autres associations entre les neutrinos de haute énergie et leurs sources. Une nouvelle génération de télescopes est en cours de construction qui offrira une plus grande sensibilité aux TDE et à d'autres sources de neutrinos ».

    Le satellite Swift de la Nasa a aussi vu le TDE générateur de neutrinos et dans cette vidéo les chercheurs précisent les modèles proposés pour les produire. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © NASA Goddard

    Source: https://www.futura-sciences.com/sciences/actualites/trou-noir-destruction-etoiles-trous-noirs-trahie-neutrinos-emis-59784/?utm_content=bufferb529e&utm_medium=social&utm_source=facebook.com&utm_campaign=futura&fbclid=IwAR0atldPV2KCbvetDKZSWShn1y8qVfgLXAOuui4MVvC6gIA3emDp1TzJV1g

  • Actualité de l'astronomie du 21.02.2021 / Des ondes gravitationnelles seraient détectables avec des missions à destination de Neptune.

    Des ondes gravitationnelles seraient détectables avec des missions à destination de Neptune

     

    Laurent Sacco

    Journaliste

    Peut être une image de planète

    Publié le 14/02/2021

     [EN VIDÉO] Interview : comment mesurer les ondes gravitationnelles ?  Les ondes gravitationnelles sont des déformations de l’espace-temps prédites par Einstein. Il serait possible de les mesurer avec des outils appropriés. L’éditeur littéraire Dunod a interviewé Pierre Binétruy, professeur au laboratoire Astroparticule et Cosmologie de l'université Paris Diderot, afin d’en savoir plus sur ces mystérieuses ondes et sur la façon dont on pourrait les détecter. 

    En traversant le Système solaire, des ondes gravitationnelles modifieraient les trajectoires des ondes radio connectées aux futures sondes spatiales à destination de Neptune et Uranus. On pourrait détecter avec ces sondes les ondes gravitationnelles issues d'événements appelés EMRI. Elles seraient une mine d'informations pour la cosmologie et la théorie des trous noirs relevant peut-être d'une nouvelle physique.

    Il y a cinq ans, nous sommes entrés dans l'ère de l'astronomie gravitationnelle et peu de temps après, l'astronomie multimessager a fait un nouveau bond avec l'observation des ondes gravitationnelles et électromagnétiques d'une kilonova. Les perspectives de détections des ondes gravitationnelles ne cessent de s'ouvrir et pas uniquement avec des interféromètres utilisant des rayons laser comme Virgo et Ligo. On peut citer à cet égard la collaboration NANOGrav (North American Nanohertz Observatory for Gravitationnal Waves).

    Si ces détecteurs ont déjà mis en évidence des collisions de trous noirs dans des systèmes binaires, ce ne sont que des trous noirs stellaires. On attend beaucoup d'un autre interféromètre qui, lui, devrait se trouver dans l'espace à l'horizon des années 2030 : eLisa.

    Avec lui on devrait pouvoir détecter des collisions de trous noirs supermassifs et aussi ce que les astrophysiciens relativistes ont baptisé des événements de la classe des « extreme mass ratio inspirals » (EMRI). En effet eLisa est sensible à des ondes gravitationnelles de basses fréquences que ne peuvent détecter des instruments terrestres comme Ligo et Virgo. De quoi s'agit-il ?

     

    Les ondes gravitationnelles et les « extreme mass ratio inspirals »

    Rien de très mystérieux, il s'agirait d'une étoile à neutrons ou d'un trou noir stellaire (voir intermédiaire de faible masse) qui se trouverait en orbite autour d'un trou noir supermassif. Bien qu'à beaucoup plus grande distance de ce trou noir qu'il ne le serait avec un autre objet compact d'origine stellaire, donc contenant moins de 100 masses solaires, la présence d'un trou noir supermassif dépassant le million de masses solaires en ferait tout de même une puissante source d'ondes gravitationnelles à cause du rapport de masse extrême entre les deux objets.

    Elle le serait alors qu'en vertu d'une des lois de Kepler la période orbitale de l'astre compact le moins massif est encore longue, et qu'il lui faudrait boucler encore 10.000 orbites environ en spirale en perdant de l'énergie sous forme d'ondes gravitationnelles avant d'entrer en collision avec le trou noir supermassif.

    Une simulation crédible de la trajectoire d'un trou noir intermédiaire contenant 270 masses solaires autour d'un trou noir supermassif contenant trois millions de masses solaires. Le signal des ondes gravitationnelles monte en fréquence alors que les deux objets se rapprochent comme sa transcription dans le domaine sonore l'illustre bien. © Steve Drasco

    Les astrophysiciens relativistes ont montré que le petit corps compact se comporterait alors comme une sonde ayant tout le temps de cartographier avec précision la structure du champ de gravitation autour du géant, qui serait un trou noir de Kerr en rotation. Il deviendrait alors possible de tester fortement la théorie des trous noirs et donc indirectement la théorie de la relativité générale d'Einstein. Plusieurs variantes d'une théorie relativiste de la gravitation avec un espace-temps courbe gouverné par d'autres équations que celles d'Einstein, par exemple en relation avec la théorie des supercordes, ont en effet été découvertes. Mieux, nous pourrions peut-être découvrir que les trous noirs supermassifs sont en fait des trous de ver.

    En bonus, l'émission d'ondes avec un EMRI permet de remonter précisément à la masse et au moment cinétique d'un trou noir supermassif. En dressant des statistiques avec de nombreuses sources, on peut alors poser des contraintes sur l'origine et le mode de croissance des trous noirs supermassifs. Or, c'est une importante fenêtre sur l'histoire des galaxies.

    La cosmologie est elle aussi impactée par des découvertes d'EMRI car on peut tirer du signal gravitationnel une estimation directe de la distance du trou noir supermassif impliqué dans une galaxie, dont on peut mesurer le décalage spectral. Plutôt que de s'appuyer sur une échelle de méthodes pour mesurer les distances cosmologiques, méthodes introduisant chacune une erreur, des mesures directes fourniraient des estimations de la constante de Hubble plus précises et donc susceptibles de révolutionner notre détermination de la nature de l'énergie noire accélérant l'expansion du cosmos observable.

    Une image de synthèse représentant un modèle de la courbure de l'espace d'un petit objet compact en orbite rapproché autour d'un trou noir supermassif, déformant lui aussi l'espace-temps. © Nasa

    Une image de synthèse représentant un modèle de la courbure de l'espace d'un petit objet compact en orbite rapproché autour d'un trou noir supermassif, déformant lui aussi l'espace-temps. © Nasa 

     

    Un effet Doppler pour détecter les ondes gravitationnelles

    Aujourd'hui, une équipe internationale d'astrophysiciens menée par Deniz Soyuer de l'université de Zurich, en Suisse, vient de publier un intéressant article disponible en accès libre sur arXiv renouvelant une idée déjà mise en pratique depuis presque 50 ans, et plus précisément depuis le lancement de la célèbre mission Pioneer 11 qui survola Jupiter puis Saturne.

    On peut montrer que le passage d'une onde gravitationnelle dans le Système solaire va modifier la propagation des ondes radio entre la Terre et une sonde telle Pioneer 11 ou New Horizons, comme elle le fait pour les faisceaux laser de Ligo et Virgo. Un décalage Doppler en résulte mais il est très faible et facilement dégradé et bruité. De fait, aucune des missions longue distance telle Cassini n'a mis en évidence cet effet à ce jour.

    Mais, selon Soyuer, les progrès technologiques changent la donne et les prochaines missions de la Nasa envisagées en direction d'Uranus et surtout de Neptune, comme la mission Trident, pourraient détecter les ondes gravitationnelles associées aux EMRI à l'horizon des années 2030 et donc servir de complément à eLisa.

    Source: https://www.futura-sciences.com/sciences/actualites/ondes-gravitationnelles-ondes-gravitationnelles-seraient-detectables-missions-destination-neptune-85679/?fbclid=IwAR0dRfvXGj937hA86qOZ3QpZb-cjt0K5XSYXalDValMjQ2YOvf0jK_9HM5E&utm_content=buffer2d93c&utm_medium=social&utm_source=facebook.com&utm_campaign=futura